Upload PPO trained agent for LunarLander environment
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-params-lunarlander-v2.zip +2 -2
- ppo-params-lunarlander-v2/data +21 -21
- ppo-params-lunarlander-v2/policy.optimizer.pth +1 -1
- ppo-params-lunarlander-v2/policy.pth +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 280.15 +/- 18.85
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fc978f6d5e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc978f6d670>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc978f6d700>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc978f6d790>", "_build": "<function ActorCriticPolicy._build at 0x7fc978f6d820>", "forward": "<function ActorCriticPolicy.forward at 0x7fc978f6d8b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc978f6d940>", "_predict": "<function ActorCriticPolicy._predict at 0x7fc978f6d9d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc978f6da60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc978f6daf0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc978f6db80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fc978f62e40>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 2031616, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670858159547117113, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABqAEz2BAZW8EnDXvF7GSD0svbS9Lm0WPAAAgD8AAIA/zYh6vIPYQrzvJ7M78s2oPBV4pr2aYIk9AACAPwAAgD9D72u+b3tNPzigOT7MCh2/E/7TvvvJoT4AAAAAAAAAAOYpKT3h+M26+VrMve02iTzWEHu81odtPQAAgD8AAAAAzdaYPParazt5ZwU9q3dwvq4paT37XdW+AAAAAAAAgD9muSA9yRkEPnh6d71SEdG+pa8APd2GejkAAAAAAAAAAGYJzTwplDe6ckF7vHM1qTTTgik7zDwptAAAAAAAAAAAgGoAPh81zzwmiJC+XXuPvuwz8TzrFdC9AAAAAAAAAACaq3Y89owruhGQHL2GkR02WTCKu2Tij7UAAIA/AAAAAO3GMD5xZcw90jZ9vjObyr5qSy49kraDvQAAAAAAAAAATdWRvoNjhD8pijc92Z/9vvRM+b5eFDM+AAAAAAAAAAAAcu28HwX1ucrMgzlzH9Y0euHqO9iinLgAAIA/AAAAAOD8lj7YvTc/sQEavabJC79qNoQ+IyZ9vQAAAAAAAAAA2tXQPQlKMT0qtVC+wJa3vs1rPz09wR29AAAAAAAAAACANTa9Qk34PibVrD07oyC/I8L3vQzhtj0AAAAAAAAAAI3AlD5BwJY/WhPaPkEbN79LI7o+3gbXPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMImaCGb+GAckCUhpRSlIwBbJRLp4wBdJRHQLO5Syn1nNB1fZQoaAZoCWgPQwi862zIv4xzQJSGlFKUaBVLvWgWR0CzuV1jEvTPdX2UKGgGaAloD0MIyCQjZ2GXcUCUhpRSlGgVS51oFkdAs7l4BFNL13V9lChoBmgJaA9DCGzOwTOh9nJAlIaUUpRoFUvfaBZHQLO5i3d9Dx91fZQoaAZoCWgPQwhj0t9LoQVyQJSGlFKUaBVLpWgWR0CzuY7P+n63dX2UKGgGaAloD0MIx/SEJV5kckCUhpRSlGgVS7loFkdAs7mh7pmmL3V9lChoBmgJaA9DCHpuoSvRkHFAlIaUUpRoFUujaBZHQLO5rORT0g91fZQoaAZoCWgPQwhB1ejVwH9xQJSGlFKUaBVL0mgWR0CzubHPZ7HAdX2UKGgGaAloD0MISN3OvnLvckCUhpRSlGgVS9ZoFkdAs7nNMQEpzHV9lChoBmgJaA9DCI1F09lJuHJAlIaUUpRoFUuvaBZHQLO54zTWoWJ1fZQoaAZoCWgPQwgaprbUwcNxQJSGlFKUaBVLxmgWR0Czue8XizcAdX2UKGgGaAloD0MIBwySPi3qckCUhpRSlGgVS8JoFkdAs7n369CeE3V9lChoBmgJaA9DCBnFckur3XNAlIaUUpRoFU0AAWgWR0CzuhzGYKIBdX2UKGgGaAloD0MIZr6Dn3jLckCUhpRSlGgVS+FoFkdAs7pRt2s7uHV9lChoBmgJaA9DCAXhCiiUYnBAlIaUUpRoFUvTaBZHQLO6YyCWeH11fZQoaAZoCWgPQwidZoF2BzNxQJSGlFKUaBVLxWgWR0CzumJ3PiT/dX2UKGgGaAloD0MIA0GADB2Cc0CUhpRSlGgVS9hoFkdAs7q1z8xbjnV9lChoBmgJaA9DCGRYxRuZ0XJAlIaUUpRoFUvfaBZHQLO6vT+NtIl1fZQoaAZoCWgPQwjDDmPSHxJzQJSGlFKUaBVLz2gWR0CzusB7mdRSdX2UKGgGaAloD0MIQx7BjVR+c0CUhpRSlGgVS81oFkdAs7rIN0/4ZnV9lChoBmgJaA9DCGgFhqyutXFAlIaUUpRoFUv1aBZHQLO6yDej2zx1fZQoaAZoCWgPQwiI9Uat8E1wQJSGlFKUaBVLp2gWR0CzuuSfg75mdX2UKGgGaAloD0MIQu4iTNFuc0CUhpRSlGgVS/RoFkdAs7sDADaGpXV9lChoBmgJaA9DCBU5RNwcGHNAlIaUUpRoFUviaBZHQLO7COXE61d1fZQoaAZoCWgPQwhMpgpGZZVwQJSGlFKUaBVLx2gWR0CzuzyEYfnwdX2UKGgGaAloD0MIxhnDnKBKcUCUhpRSlGgVS+5oFkdAs7tDUnXumnV9lChoBmgJaA9DCCEBo8sbpnJAlIaUUpRoFUvRaBZHQLO7g5ggHNZ1fZQoaAZoCWgPQwgZARWOYDFyQJSGlFKUaBVL1mgWR0Czu57CaZx8dX2UKGgGaAloD0MI9+Y3TDQHcUCUhpRSlGgVS6xoFkdAs7u11zQu3HV9lChoBmgJaA9DCDIdOj0viHNAlIaUUpRoFUvoaBZHQLO7vKB/Zuh1fZQoaAZoCWgPQwj11ysseGJxQJSGlFKUaBVLtGgWR0Czu8x8hLXddX2UKGgGaAloD0MIrfiGwqdacECUhpRSlGgVS7BoFkdAs7vOLFXJYHV9lChoBmgJaA9DCMr5Yu9FS3JAlIaUUpRoFUvAaBZHQLO72rKNhmZ1fZQoaAZoCWgPQwj04VmCzBBzQJSGlFKUaBVNXQFoFkdAs7veBtk4FXV9lChoBmgJaA9DCBy3mJ8buXFAlIaUUpRoFUvEaBZHQLO76X8fmtB1fZQoaAZoCWgPQwikjo6rEeNxQJSGlFKUaBVLuGgWR0Czu/VCPZIydX2UKGgGaAloD0MI4EkLl5Vbc0CUhpRSlGgVS79oFkdAs7wjLns9jnV9lChoBmgJaA9DCCI3ww14tXJAlIaUUpRoFUvHaBZHQLO8KQT238Z1fZQoaAZoCWgPQwiqSIWxxXxyQJSGlFKUaBVL32gWR0CzvIZqh11XdX2UKGgGaAloD0MIkE5d+SxXc0CUhpRSlGgVS+doFkdAs7yaGJvYOHV9lChoBmgJaA9DCEX11sAWx3BAlIaUUpRoFUvFaBZHQLO8qf9P1th1fZQoaAZoCWgPQwiQ14NJ8aFwQJSGlFKUaBVLuGgWR0CzvMZzT4L1dX2UKGgGaAloD0MIP4wQHi0VcUCUhpRSlGgVS6poFkdAs7zJUgjhUHV9lChoBmgJaA9DCKvnpPcNXXFAlIaUUpRoFUuxaBZHQLO84T9bX6J1fZQoaAZoCWgPQwjXT/9Z83BwQJSGlFKUaBVLqGgWR0CzvOTR2KVIdX2UKGgGaAloD0MIeO3ShgPDcECUhpRSlGgVS7JoFkdAs7zmeTV2BHV9lChoBmgJaA9DCIJy274Hh3JAlIaUUpRoFUvfaBZHQLO87AZsKsx1fZQoaAZoCWgPQwjuQ95y9VR0QJSGlFKUaBVL1mgWR0CzvPlAZ88cdX2UKGgGaAloD0MI8DUExyWqcECUhpRSlGgVS7loFkdAs70KHLzPKXV9lChoBmgJaA9DCA1VMZX+MnJAlIaUUpRoFUvYaBZHQLO9C052hZh1fZQoaAZoCWgPQwg5miMrv2pmQJSGlFKUaBVN6ANoFkdAs70o2Q4jr3V9lChoBmgJaA9DCI+lD13QHnNAlIaUUpRoFUvPaBZHQLO9VU96kZd1fZQoaAZoCWgPQwjfbkkOWMtyQJSGlFKUaBVL5WgWR0CzvW0LDye7dX2UKGgGaAloD0MIwXCuYQayb0CUhpRSlGgVS6poFkdAs72JOKwY+HV9lChoBmgJaA9DCAk2rn8Xo3NAlIaUUpRoFUvNaBZHQLO9qjUd7v51fZQoaAZoCWgPQwimme51UlFxQJSGlFKUaBVLwGgWR0Czvbdz4k/sdX2UKGgGaAloD0MIgsr49xkkcUCUhpRSlGgVS51oFkdAs729kK/mDHV9lChoBmgJaA9DCIT1fw4z3HBAlIaUUpRoFUusaBZHQLO914oZydZ1fZQoaAZoCWgPQwhnKy/5n6JyQJSGlFKUaBVLvmgWR0CzveamKqGUdX2UKGgGaAloD0MIwlHy6lweckCUhpRSlGgVS9NoFkdAs73sXyiEhHV9lChoBmgJaA9DCDhMNEgBiHFAlIaUUpRoFUvWaBZHQLO98telbeN1fZQoaAZoCWgPQwiBP/z8t1RxQJSGlFKUaBVLr2gWR0CzvflIVdondX2UKGgGaAloD0MIhxQDJFpccUCUhpRSlGgVS71oFkdAs74Ky2QXAXV9lChoBmgJaA9DCDAS2nIuNHNAlIaUUpRoFUusaBZHQLO+ElvqC6J1fZQoaAZoCWgPQwgNVMa/T05yQJSGlFKUaBVL32gWR0CzvhQbZOBUdX2UKGgGaAloD0MIr0Ffejs9ckCUhpRSlGgVS+RoFkdAs74rQXyiEnV9lChoBmgJaA9DCKiOVUpPxWJAlIaUUpRoFU3oA2gWR0CzvjmPtD2KdX2UKGgGaAloD0MI5xn7ks1jckCUhpRSlGgVS7toFkdAs75jxVhkRXV9lChoBmgJaA9DCI7LuKkBIXNAlIaUUpRoFUvUaBZHQLO+bEgntv51fZQoaAZoCWgPQwg2yCQj5yByQJSGlFKUaBVLl2gWR0CzvnqhUR4AdX2UKGgGaAloD0MITpoGRbM/cECUhpRSlGgVS7xoFkdAs758SeyzHHV9lChoBmgJaA9DCLa93ZLcAXJAlIaUUpRoFUvAaBZHQLO+mwztTk11fZQoaAZoCWgPQwiDwTV3NKZxQJSGlFKUaBVLvmgWR0CzvqOCkGiYdX2UKGgGaAloD0MIAHDs2TPPcECUhpRSlGgVS7VoFkdAs76/ggow23V9lChoBmgJaA9DCCdNg6L5ZHFAlIaUUpRoFUuzaBZHQLO+whYNiH91fZQoaAZoCWgPQwgKSWb1TkNwQJSGlFKUaBVLrmgWR0CzvsIMvyskdX2UKGgGaAloD0MIeZEJ+DW6b0CUhpRSlGgVS6toFkdAs77FdWyTp3V9lChoBmgJaA9DCOViDKyjOnFAlIaUUpRoFUuhaBZHQLO+004iosJ1fZQoaAZoCWgPQwjH1F3Zxb9zQJSGlFKUaBVLwGgWR0Czvu7sOXmedX2UKGgGaAloD0MIpZ4FofxickCUhpRSlGgVS79oFkdAs771LvkRz3V9lChoBmgJaA9DCOauJeSDpXFAlIaUUpRoFUulaBZHQLO+/Je3QUp1fZQoaAZoCWgPQwhd3hyu1e4+QJSGlFKUaBVLhWgWR0CzvwEETxoadX2UKGgGaAloD0MIC5bqAh7KcECUhpRSlGgVS7doFkdAs78EDeTFEXV9lChoBmgJaA9DCJq1FJC2iXFAlIaUUpRoFU0UAWgWR0CzvyCwB5oodX2UKGgGaAloD0MIvYxiueVCcUCUhpRSlGgVS7NoFkdAs787Tz/ZNHV9lChoBmgJaA9DCBFtx9Sdo3FAlIaUUpRoFUuyaBZHQLO/SObiIcl1fZQoaAZoCWgPQwhaK9ocp9NxQJSGlFKUaBVLjGgWR0Czv2Q9ic5KdX2UKGgGaAloD0MIu9OdJ55ncUCUhpRSlGgVS81oFkdAs79rKGL1mXV9lChoBmgJaA9DCM9nQL0ZJ3FAlIaUUpRoFUuiaBZHQLO/gAkLQX11fZQoaAZoCWgPQwjOjH40HMBxQJSGlFKUaBVL0mgWR0Czv5vE4vOAdX2UKGgGaAloD0MI8P0N2uv3ckCUhpRSlGgVS99oFkdAs7+iYplSTHV9lChoBmgJaA9DCBhA+FBi/XFAlIaUUpRoFUuZaBZHQLO/o1hb4ah1fZQoaAZoCWgPQwgP8KSFy+VxQJSGlFKUaBVLvmgWR0Czv6VTvRZ2dX2UKGgGaAloD0MIMLq8Odxlb0CUhpRSlGgVS6doFkdAs7++32EkB3V9lChoBmgJaA9DCOoENBF2P3FAlIaUUpRoFUu6aBZHQLO/z+so2GZ1fZQoaAZoCWgPQwj04O6sXYlyQJSGlFKUaBVL2mgWR0Czv9Re5WildX2UKGgGaAloD0MIFYvfFJZ6cECUhpRSlGgVS7xoFkdAs7/fHJcPfHV9lChoBmgJaA9DCOQxA5XxCHRAlIaUUpRoFUvyaBZHQLO/3vdM0xd1fZQoaAZoCWgPQwj/lCpRNqlxQJSGlFKUaBVLu2gWR0Czv+E/GEPEdX2UKGgGaAloD0MIkgN2Nfk1b0CUhpRSlGgVS65oFkdAs7/vqTr3TXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 620, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f5eb3556790>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5eb3556820>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5eb35568b0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5eb3556940>", "_build": "<function ActorCriticPolicy._build at 0x7f5eb35569d0>", "forward": "<function ActorCriticPolicy.forward at 0x7f5eb3556a60>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5eb3556af0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f5eb3556b80>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5eb3556c10>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5eb3556ca0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5eb3556d30>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f5eb3557090>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 2015232, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670939249073810122, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJodLLzsqaC5H/iSOs+rorUaMoI6pb2rtAAAgD8AAIA/gNxHPXHtZLl4flI6/DsUNrtXujpgm3S5AACAPwAAgD8zIdS9uFbOuQn3lrtmWD237JaIO4lYsDoAAIA/AACAPwB5Ib3XU3a5T10TPMKjnrTpQjw7jrO8swAAgD8AAIA/AJSau4/OI7qjI2o8/cLWvD/7LrpFNrw9AACAPwAAAADNwKu8w/06uhONbzl3d9Uysm4Yuxr9i7gAAIA/AACAPxq1F732uG66huObO9e8ETfUpQE71tyxugAAgD8AAIA/AGt1PY9+Q7rJDhw7dWjJNtdpJrr2usA1AACAPwAAgD/NP9Y8XCNhuow5JLxRVA49PyJIOxip8T0AAIA/AACAPzO0OL0f1eK59Z6FuhHnAzVNIRm7YP6cOQAAgD8AAIA/mqyQvClAUrrnqB466w6WtRJVCbp6S4u0AACAPwAAgD+Azvc9umcoPp3I074bKLG+kG/ivYbH5r0AAAAAAAAAAJqe6jyF69G58nVpO29FJDYDMRq7URGGugAAgD8AAIA/AEMMPfbEJrr1IEK8eRQyNpWprDr+lqO1AACAPwAAgD/mI2C9j+oEur4XorvLGfI1kyAjOwBqXrUAAIA/AACAPwCo5buPUkK6oHFoOrNziDZ++S87Y4F6NQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVdhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIUwQ4vYsHZ0CUhpRSlIwBbJRN6AOMAXSUR0CiE0KB/ZuidX2UKGgGaAloD0MIhUIEHEJxZkCUhpRSlGgVTegDaBZHQKIThCojv/l1fZQoaAZoCWgPQwjufD81XuNkQJSGlFKUaBVN6ANoFkdAohOaHh0heXV9lChoBmgJaA9DCO2CwTX35GFAlIaUUpRoFU3oA2gWR0CiFPpvgm7bdX2UKGgGaAloD0MIhBJm2n4eY0CUhpRSlGgVTegDaBZHQKIWCdq+Jxh1fZQoaAZoCWgPQwhVE0TdBzJlQJSGlFKUaBVN6ANoFkdAohoGrlvIfnV9lChoBmgJaA9DCGQD6WJTpmJAlIaUUpRoFU3oA2gWR0CiGkKZc9nsdX2UKGgGaAloD0MIkKSkh6F6ZkCUhpRSlGgVTegDaBZHQKIcJFl05lx1fZQoaAZoCWgPQwjKpfELrwpoQJSGlFKUaBVN6ANoFkdAohxf6be/H3V9lChoBmgJaA9DCHkCYadYg2RAlIaUUpRoFU3oA2gWR0CiHh8UmD15dX2UKGgGaAloD0MIcxB0tCqeZkCUhpRSlGgVTegDaBZHQKIfODf3vhJ1fZQoaAZoCWgPQwiXjGMke1dnQJSGlFKUaBVN6ANoFkdAojJk6gdwN3V9lChoBmgJaA9DCNR9AFKbzGRAlIaUUpRoFU3oA2gWR0CiMpZCOWB0dX2UKGgGaAloD0MIayxhbYzXZECUhpRSlGgVTegDaBZHQKIztHCoCMh1fZQoaAZoCWgPQwgxzt+EQplkQJSGlFKUaBVN6ANoFkdAojYRjnV5KXV9lChoBmgJaA9DCLvSMlLvEGlAlIaUUpRoFU3oA2gWR0CiN2kzO5avdX2UKGgGaAloD0MIzLbT1ghDZECUhpRSlGgVTegDaBZHQKI3q1LrX191fZQoaAZoCWgPQwg4EmiwKQdpQJSGlFKUaBVN6ANoFkdAojgHQhOgx3V9lChoBmgJaA9DCMH+69y0EWlAlIaUUpRoFU3oA2gWR0CiOCfvWpZPdX2UKGgGaAloD0MIwqbOo2K+ZUCUhpRSlGgVTegDaBZHQKI6O5rgwXZ1fZQoaAZoCWgPQwjnN0w0yNNlQJSGlFKUaBVN6ANoFkdAojvi5RTCL3V9lChoBmgJaA9DCPZCAdvBNGVAlIaUUpRoFU3oA2gWR0CiQL3sw+MZdX2UKGgGaAloD0MIiEojZvbCZkCUhpRSlGgVTegDaBZHQKJA8Y7aIvd1fZQoaAZoCWgPQwiGVFG8SqVjQJSGlFKUaBVN6ANoFkdAokKmkk8ifXV9lChoBmgJaA9DCDlf7L14mWVAlIaUUpRoFU3oA2gWR0CiQuM5fdAPdX2UKGgGaAloD0MIdsO2RRlWZUCUhpRSlGgVTegDaBZHQKJEfM10knl1fZQoaAZoCWgPQwiJJHoZRS9hQJSGlFKUaBVN6ANoFkdAokWOh9LHuXV9lChoBmgJaA9DCE9ZTdeTWmBAlIaUUpRoFU3oA2gWR0CiWBG1QZXNdX2UKGgGaAloD0MILVqAtlX7ZECUhpRSlGgVTegDaBZHQKJYQnR9gF51fZQoaAZoCWgPQwg+527XSyhkQJSGlFKUaBVN6ANoFkdAollQywfQr3V9lChoBmgJaA9DCJUMAFXcaGJAlIaUUpRoFU3oA2gWR0CiW6l3Y+SsdX2UKGgGaAloD0MI5geu8gT+QUCUhpRSlGgVS51oFkdAolwiv7m+03V9lChoBmgJaA9DCCGU93G0umZAlIaUUpRoFU3oA2gWR0CiXMJ4KQaKdX2UKGgGaAloD0MIiCr8GV5YYUCUhpRSlGgVTegDaBZHQKJc7Pnjhk11fZQoaAZoCWgPQwj6CtKMRY5pQJSGlFKUaBVN6ANoFkdAol0vvBrN4nV9lChoBmgJaA9DCG/UCtP38WZAlIaUUpRoFU3oA2gWR0CiXUZJsfq5dX2UKGgGaAloD0MIOj3vxgLFYUCUhpRSlGgVTegDaBZHQKJewI8hcJN1fZQoaAZoCWgPQwga3UHsTCtnQJSGlFKUaBVN6ANoFkdAol/l61LJ0XV9lChoBmgJaA9DCICCixU1TWhAlIaUUpRoFU3oA2gWR0CiZBAFgUlBdX2UKGgGaAloD0MIVOOlm0RhY0CUhpRSlGgVTegDaBZHQKJkTYbKifx1fZQoaAZoCWgPQwi3Qe23ds9lQJSGlFKUaBVN6ANoFkdAomZLnTy8SXV9lChoBmgJaA9DCIyFIXL6ZWJAlIaUUpRoFU3oA2gWR0CiZoya/h2odX2UKGgGaAloD0MI100prxWOZUCUhpRSlGgVTegDaBZHQKJojKCg9Nh1fZQoaAZoCWgPQwiAK9mxEQxAQJSGlFKUaBVLaWgWR0CiaRYvWYnfdX2UKGgGaAloD0MIV5V9VwQ3aUCUhpRSlGgVTegDaBZHQKJp0bCJoCd1fZQoaAZoCWgPQwjxuKgWEaxkQJSGlFKUaBVN6ANoFkdAonzb30wrUnV9lChoBmgJaA9DCNQrZRni5mNAlIaUUpRoFU3oA2gWR0Ciff59Vmz0dX2UKGgGaAloD0MIsYhhhzFWakCUhpRSlGgVTegDaBZHQKKAcMTewcJ1fZQoaAZoCWgPQwijBtMwfDplQJSGlFKUaBVN6ANoFkdAooDo8nuy/3V9lChoBmgJaA9DCKoM426QXWdAlIaUUpRoFU3oA2gWR0CigYwbEP1+dX2UKGgGaAloD0MIiXyXUpfsYkCUhpRSlGgVTegDaBZHQKKBtjkuHvd1fZQoaAZoCWgPQwjSHFn55QpiQJSGlFKUaBVN6ANoFkdAooH1+Zw4sHV9lChoBmgJaA9DCPm6DP9ph2lAlIaUUpRoFU3oA2gWR0CiggufukULdX2UKGgGaAloD0MIVFVoIJbRYUCUhpRSlGgVTegDaBZHQKKDcq4H5ah1fZQoaAZoCWgPQwhc5QmEHaJmQJSGlFKUaBVN6ANoFkdAooR82eg+QnV9lChoBmgJaA9DCHzWNVoOp2VAlIaUUpRoFU3oA2gWR0CiiFCV8kUsdX2UKGgGaAloD0MIVryReeRaZ0CUhpRSlGgVTegDaBZHQKKIhvMr3Cd1fZQoaAZoCWgPQwgdcjPcAOljQJSGlFKUaBVN6ANoFkdAooqHXRPXTXV9lChoBmgJaA9DCKFMo8nFWAPAlIaUUpRoFUuGaBZHQKKLdxZMcp91fZQoaAZoCWgPQwgJjPUNzI1iQJSGlFKUaBVN6ANoFkdAooxPkYGdJHV9lChoBmgJaA9DCKxT5XtGuWVAlIaUUpRoFU3oA2gWR0CijM5BLPD6dX2UKGgGaAloD0MIRDS6g9gKY0CUhpRSlGgVTegDaBZHQKKNc+De0ol1fZQoaAZoCWgPQwjl02NbBiZMQJSGlFKUaBVLlWgWR0Cij6wbuMMrdX2UKGgGaAloD0MI9iUbD7ZYSUCUhpRSlGgVS3toFkdAop5Rje9BbHV9lChoBmgJaA9DCD5CzZAq2WRAlIaUUpRoFU3oA2gWR0CioJs0HhS+dX2UKGgGaAloD0MIeNMtO8TKZUCUhpRSlGgVTegDaBZHQKKh3h/Aj6h1fZQoaAZoCWgPQwjyW3Sy1M9mQJSGlFKUaBVN6ANoFkdAoqSduaWonHV9lChoBmgJaA9DCEGd8uhGR2RAlIaUUpRoFU3oA2gWR0CipTEo4MnadX2UKGgGaAloD0MIEFmkiXd9ZUCUhpRSlGgVTegDaBZHQKKl7eQ+2Vp1fZQoaAZoCWgPQwgAVHHjlulkQJSGlFKUaBVN6ANoFkdAoqYdHe7+UHV9lChoBmgJaA9DCPVnP1LEA2ZAlIaUUpRoFU3oA2gWR0CipmL9deIEdX2UKGgGaAloD0MIJZF9kOVkZ0CUhpRSlGgVTegDaBZHQKKmevPC2tx1fZQoaAZoCWgPQwhODMnJxOxnQJSGlFKUaBVN6ANoFkdAoqgJOvdM03V9lChoBmgJaA9DCByz7ElgGyjAlIaUUpRoFUtnaBZHQKKotYQrc0t1fZQoaAZoCWgPQwiYTBWMSppNQJSGlFKUaBVLfGgWR0CiqMgLRa5gdX2UKGgGaAloD0MIAMrfvSMMYUCUhpRSlGgVTegDaBZHQKKpMYtxuKp1fZQoaAZoCWgPQwhivOZVHR1kQJSGlFKUaBVN6ANoFkdAoq1/3g1m8XV9lChoBmgJaA9DCJc48kDk8mJAlIaUUpRoFU3oA2gWR0Cir92AoXsPdX2UKGgGaAloD0MIfzDw3HvYKkCUhpRSlGgVS3RoFkdAorCqeK8+R3V9lChoBmgJaA9DCC9RvTUwHmVAlIaUUpRoFU3oA2gWR0CisOwmE5AAdX2UKGgGaAloD0MIWp2cobhlZ0CUhpRSlGgVTegDaBZHQKKyXzJ6po91fZQoaAZoCWgPQwgDC2DKQHRkQJSGlFKUaBVN6ANoFkdAorMSK1og3nV9lChoBmgJaA9DCCWTUzvDDENAlIaUUpRoFUuTaBZHQKK0X/DtPYZ1fZQoaAZoCWgPQwjMXradtthDQJSGlFKUaBVLnmgWR0CitxhcAzYVdX2UKGgGaAloD0MIjKNyEzWbZUCUhpRSlGgVTegDaBZHQKLElllK9PF1fZQoaAZoCWgPQwiYNEbrqI5FQJSGlFKUaBVLb2gWR0Cixfb3XZoPdX2UKGgGaAloD0MI2GFM+vucZUCUhpRSlGgVTegDaBZHQKLGuYIjW091fZQoaAZoCWgPQwhZF7fRAH5jQJSGlFKUaBVN6ANoFkdAosgUsMAmzHV9lChoBmgJaA9DCH47iQj/9l9AlIaUUpRoFU3oA2gWR0Ciyr+KbaysdX2UKGgGaAloD0MI1lJA2v+6ZECUhpRSlGgVTegDaBZHQKLLQH446wN1fZQoaAZoCWgPQwgq/YSz2+RgQJSGlFKUaBVN6ANoFkdAoswhbMX7+HV9lChoBmgJaA9DCFJgAUwZIWJAlIaUUpRoFU3oA2gWR0CizIS13MY/dX2UKGgGaAloD0MIN92yQ3yYYECUhpRSlGgVTegDaBZHQKLORssQNCt1fZQoaAZoCWgPQwgTSIld22phQJSGlFKUaBVN6ANoFkdAos8EuOCGvnV9lChoBmgJaA9DCL/yID1FQ2dAlIaUUpRoFU3oA2gWR0Cizxht1p0wdX2UKGgGaAloD0MIr7Mh/8yDZECUhpRSlGgVTegDaBZHQKLPe9hZyMl1fZQoaAZoCWgPQwh0toDQekJnQJSGlFKUaBVN6ANoFkdAotY2M+/xlXV9lChoBmgJaA9DCH5WmSmtkmJAlIaUUpRoFU3oA2gWR0Ci12wljVhDdX2UKGgGaAloD0MIp+fdWFAnZECUhpRSlGgVTegDaBZHQKLZAjQAuI11fZQoaAZoCWgPQwib5h2n6NleQJSGlFKUaBVN6ANoFkdAots0XSBsh3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1230, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.05, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 128, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-params-lunarlander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d25541b75b2bc667a6f026c6e5ad80cc09be579c40da8c871ef6867bfc950791
|
3 |
+
size 147209
|
ppo-params-lunarlander-v2/data
CHANGED
@@ -4,19 +4,19 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
14 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
15 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
16 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
17 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
18 |
"__abstractmethods__": "frozenset()",
|
19 |
-
"_abc_impl": "<_abc_data object at
|
20 |
},
|
21 |
"verbose": 1,
|
22 |
"policy_kwargs": {},
|
@@ -42,12 +42,12 @@
|
|
42 |
"_np_random": null
|
43 |
},
|
44 |
"n_envs": 16,
|
45 |
-
"num_timesteps":
|
46 |
"_total_timesteps": 2000000,
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
-
"start_time":
|
51 |
"learning_rate": 0.0003,
|
52 |
"tensorboard_log": null,
|
53 |
"lr_schedule": {
|
@@ -56,7 +56,7 @@
|
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
-
":serialized:": "
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -66,23 +66,23 @@
|
|
66 |
"_episode_num": 0,
|
67 |
"use_sde": false,
|
68 |
"sde_sample_freq": -1,
|
69 |
-
"_current_progress_remaining": -0.
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
-
":serialized:": "
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
76 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
},
|
78 |
-
"_n_updates":
|
79 |
-
"n_steps":
|
80 |
"gamma": 0.999,
|
81 |
"gae_lambda": 0.98,
|
82 |
-
"ent_coef": 0.
|
83 |
"vf_coef": 0.5,
|
84 |
"max_grad_norm": 0.5,
|
85 |
-
"batch_size":
|
86 |
"n_epochs": 10,
|
87 |
"clip_range": {
|
88 |
":type:": "<class 'function'>",
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f5eb3556790>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5eb3556820>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5eb35568b0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5eb3556940>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f5eb35569d0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f5eb3556a60>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5eb3556af0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f5eb3556b80>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5eb3556c10>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5eb3556ca0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5eb3556d30>",
|
18 |
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f5eb3557090>"
|
20 |
},
|
21 |
"verbose": 1,
|
22 |
"policy_kwargs": {},
|
|
|
42 |
"_np_random": null
|
43 |
},
|
44 |
"n_envs": 16,
|
45 |
+
"num_timesteps": 2015232,
|
46 |
"_total_timesteps": 2000000,
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
+
"start_time": 1670939249073810122,
|
51 |
"learning_rate": 0.0003,
|
52 |
"tensorboard_log": null,
|
53 |
"lr_schedule": {
|
|
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJodLLzsqaC5H/iSOs+rorUaMoI6pb2rtAAAgD8AAIA/gNxHPXHtZLl4flI6/DsUNrtXujpgm3S5AACAPwAAgD8zIdS9uFbOuQn3lrtmWD237JaIO4lYsDoAAIA/AACAPwB5Ib3XU3a5T10TPMKjnrTpQjw7jrO8swAAgD8AAIA/AJSau4/OI7qjI2o8/cLWvD/7LrpFNrw9AACAPwAAAADNwKu8w/06uhONbzl3d9Uysm4Yuxr9i7gAAIA/AACAPxq1F732uG66huObO9e8ETfUpQE71tyxugAAgD8AAIA/AGt1PY9+Q7rJDhw7dWjJNtdpJrr2usA1AACAPwAAgD/NP9Y8XCNhuow5JLxRVA49PyJIOxip8T0AAIA/AACAPzO0OL0f1eK59Z6FuhHnAzVNIRm7YP6cOQAAgD8AAIA/mqyQvClAUrrnqB466w6WtRJVCbp6S4u0AACAPwAAgD+Azvc9umcoPp3I074bKLG+kG/ivYbH5r0AAAAAAAAAAJqe6jyF69G58nVpO29FJDYDMRq7URGGugAAgD8AAIA/AEMMPfbEJrr1IEK8eRQyNpWprDr+lqO1AACAPwAAgD/mI2C9j+oEur4XorvLGfI1kyAjOwBqXrUAAIA/AACAPwCo5buPUkK6oHFoOrNziDZ++S87Y4F6NQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
66 |
"_episode_num": 0,
|
67 |
"use_sde": false,
|
68 |
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.007616000000000067,
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVdhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIUwQ4vYsHZ0CUhpRSlIwBbJRN6AOMAXSUR0CiE0KB/ZuidX2UKGgGaAloD0MIhUIEHEJxZkCUhpRSlGgVTegDaBZHQKIThCojv/l1fZQoaAZoCWgPQwjufD81XuNkQJSGlFKUaBVN6ANoFkdAohOaHh0heXV9lChoBmgJaA9DCO2CwTX35GFAlIaUUpRoFU3oA2gWR0CiFPpvgm7bdX2UKGgGaAloD0MIhBJm2n4eY0CUhpRSlGgVTegDaBZHQKIWCdq+Jxh1fZQoaAZoCWgPQwhVE0TdBzJlQJSGlFKUaBVN6ANoFkdAohoGrlvIfnV9lChoBmgJaA9DCGQD6WJTpmJAlIaUUpRoFU3oA2gWR0CiGkKZc9nsdX2UKGgGaAloD0MIkKSkh6F6ZkCUhpRSlGgVTegDaBZHQKIcJFl05lx1fZQoaAZoCWgPQwjKpfELrwpoQJSGlFKUaBVN6ANoFkdAohxf6be/H3V9lChoBmgJaA9DCHkCYadYg2RAlIaUUpRoFU3oA2gWR0CiHh8UmD15dX2UKGgGaAloD0MIcxB0tCqeZkCUhpRSlGgVTegDaBZHQKIfODf3vhJ1fZQoaAZoCWgPQwiXjGMke1dnQJSGlFKUaBVN6ANoFkdAojJk6gdwN3V9lChoBmgJaA9DCNR9AFKbzGRAlIaUUpRoFU3oA2gWR0CiMpZCOWB0dX2UKGgGaAloD0MIayxhbYzXZECUhpRSlGgVTegDaBZHQKIztHCoCMh1fZQoaAZoCWgPQwgxzt+EQplkQJSGlFKUaBVN6ANoFkdAojYRjnV5KXV9lChoBmgJaA9DCLvSMlLvEGlAlIaUUpRoFU3oA2gWR0CiN2kzO5avdX2UKGgGaAloD0MIzLbT1ghDZECUhpRSlGgVTegDaBZHQKI3q1LrX191fZQoaAZoCWgPQwg4EmiwKQdpQJSGlFKUaBVN6ANoFkdAojgHQhOgx3V9lChoBmgJaA9DCMH+69y0EWlAlIaUUpRoFU3oA2gWR0CiOCfvWpZPdX2UKGgGaAloD0MIwqbOo2K+ZUCUhpRSlGgVTegDaBZHQKI6O5rgwXZ1fZQoaAZoCWgPQwjnN0w0yNNlQJSGlFKUaBVN6ANoFkdAojvi5RTCL3V9lChoBmgJaA9DCPZCAdvBNGVAlIaUUpRoFU3oA2gWR0CiQL3sw+MZdX2UKGgGaAloD0MIiEojZvbCZkCUhpRSlGgVTegDaBZHQKJA8Y7aIvd1fZQoaAZoCWgPQwiGVFG8SqVjQJSGlFKUaBVN6ANoFkdAokKmkk8ifXV9lChoBmgJaA9DCDlf7L14mWVAlIaUUpRoFU3oA2gWR0CiQuM5fdAPdX2UKGgGaAloD0MIdsO2RRlWZUCUhpRSlGgVTegDaBZHQKJEfM10knl1fZQoaAZoCWgPQwiJJHoZRS9hQJSGlFKUaBVN6ANoFkdAokWOh9LHuXV9lChoBmgJaA9DCE9ZTdeTWmBAlIaUUpRoFU3oA2gWR0CiWBG1QZXNdX2UKGgGaAloD0MILVqAtlX7ZECUhpRSlGgVTegDaBZHQKJYQnR9gF51fZQoaAZoCWgPQwg+527XSyhkQJSGlFKUaBVN6ANoFkdAollQywfQr3V9lChoBmgJaA9DCJUMAFXcaGJAlIaUUpRoFU3oA2gWR0CiW6l3Y+SsdX2UKGgGaAloD0MI5geu8gT+QUCUhpRSlGgVS51oFkdAolwiv7m+03V9lChoBmgJaA9DCCGU93G0umZAlIaUUpRoFU3oA2gWR0CiXMJ4KQaKdX2UKGgGaAloD0MIiCr8GV5YYUCUhpRSlGgVTegDaBZHQKJc7Pnjhk11fZQoaAZoCWgPQwj6CtKMRY5pQJSGlFKUaBVN6ANoFkdAol0vvBrN4nV9lChoBmgJaA9DCG/UCtP38WZAlIaUUpRoFU3oA2gWR0CiXUZJsfq5dX2UKGgGaAloD0MIOj3vxgLFYUCUhpRSlGgVTegDaBZHQKJewI8hcJN1fZQoaAZoCWgPQwga3UHsTCtnQJSGlFKUaBVN6ANoFkdAol/l61LJ0XV9lChoBmgJaA9DCICCixU1TWhAlIaUUpRoFU3oA2gWR0CiZBAFgUlBdX2UKGgGaAloD0MIVOOlm0RhY0CUhpRSlGgVTegDaBZHQKJkTYbKifx1fZQoaAZoCWgPQwi3Qe23ds9lQJSGlFKUaBVN6ANoFkdAomZLnTy8SXV9lChoBmgJaA9DCIyFIXL6ZWJAlIaUUpRoFU3oA2gWR0CiZoya/h2odX2UKGgGaAloD0MI100prxWOZUCUhpRSlGgVTegDaBZHQKJojKCg9Nh1fZQoaAZoCWgPQwiAK9mxEQxAQJSGlFKUaBVLaWgWR0CiaRYvWYnfdX2UKGgGaAloD0MIV5V9VwQ3aUCUhpRSlGgVTegDaBZHQKJp0bCJoCd1fZQoaAZoCWgPQwjxuKgWEaxkQJSGlFKUaBVN6ANoFkdAonzb30wrUnV9lChoBmgJaA9DCNQrZRni5mNAlIaUUpRoFU3oA2gWR0Ciff59Vmz0dX2UKGgGaAloD0MIsYhhhzFWakCUhpRSlGgVTegDaBZHQKKAcMTewcJ1fZQoaAZoCWgPQwijBtMwfDplQJSGlFKUaBVN6ANoFkdAooDo8nuy/3V9lChoBmgJaA9DCKoM426QXWdAlIaUUpRoFU3oA2gWR0CigYwbEP1+dX2UKGgGaAloD0MIiXyXUpfsYkCUhpRSlGgVTegDaBZHQKKBtjkuHvd1fZQoaAZoCWgPQwjSHFn55QpiQJSGlFKUaBVN6ANoFkdAooH1+Zw4sHV9lChoBmgJaA9DCPm6DP9ph2lAlIaUUpRoFU3oA2gWR0CiggufukULdX2UKGgGaAloD0MIVFVoIJbRYUCUhpRSlGgVTegDaBZHQKKDcq4H5ah1fZQoaAZoCWgPQwhc5QmEHaJmQJSGlFKUaBVN6ANoFkdAooR82eg+QnV9lChoBmgJaA9DCHzWNVoOp2VAlIaUUpRoFU3oA2gWR0CiiFCV8kUsdX2UKGgGaAloD0MIVryReeRaZ0CUhpRSlGgVTegDaBZHQKKIhvMr3Cd1fZQoaAZoCWgPQwgdcjPcAOljQJSGlFKUaBVN6ANoFkdAooqHXRPXTXV9lChoBmgJaA9DCKFMo8nFWAPAlIaUUpRoFUuGaBZHQKKLdxZMcp91fZQoaAZoCWgPQwgJjPUNzI1iQJSGlFKUaBVN6ANoFkdAooxPkYGdJHV9lChoBmgJaA9DCKxT5XtGuWVAlIaUUpRoFU3oA2gWR0CijM5BLPD6dX2UKGgGaAloD0MIRDS6g9gKY0CUhpRSlGgVTegDaBZHQKKNc+De0ol1fZQoaAZoCWgPQwjl02NbBiZMQJSGlFKUaBVLlWgWR0Cij6wbuMMrdX2UKGgGaAloD0MI9iUbD7ZYSUCUhpRSlGgVS3toFkdAop5Rje9BbHV9lChoBmgJaA9DCD5CzZAq2WRAlIaUUpRoFU3oA2gWR0CioJs0HhS+dX2UKGgGaAloD0MIeNMtO8TKZUCUhpRSlGgVTegDaBZHQKKh3h/Aj6h1fZQoaAZoCWgPQwjyW3Sy1M9mQJSGlFKUaBVN6ANoFkdAoqSduaWonHV9lChoBmgJaA9DCEGd8uhGR2RAlIaUUpRoFU3oA2gWR0CipTEo4MnadX2UKGgGaAloD0MIEFmkiXd9ZUCUhpRSlGgVTegDaBZHQKKl7eQ+2Vp1fZQoaAZoCWgPQwgAVHHjlulkQJSGlFKUaBVN6ANoFkdAoqYdHe7+UHV9lChoBmgJaA9DCPVnP1LEA2ZAlIaUUpRoFU3oA2gWR0CipmL9deIEdX2UKGgGaAloD0MIJZF9kOVkZ0CUhpRSlGgVTegDaBZHQKKmevPC2tx1fZQoaAZoCWgPQwhODMnJxOxnQJSGlFKUaBVN6ANoFkdAoqgJOvdM03V9lChoBmgJaA9DCByz7ElgGyjAlIaUUpRoFUtnaBZHQKKotYQrc0t1fZQoaAZoCWgPQwiYTBWMSppNQJSGlFKUaBVLfGgWR0CiqMgLRa5gdX2UKGgGaAloD0MIAMrfvSMMYUCUhpRSlGgVTegDaBZHQKKpMYtxuKp1fZQoaAZoCWgPQwhivOZVHR1kQJSGlFKUaBVN6ANoFkdAoq1/3g1m8XV9lChoBmgJaA9DCJc48kDk8mJAlIaUUpRoFU3oA2gWR0Cir92AoXsPdX2UKGgGaAloD0MIfzDw3HvYKkCUhpRSlGgVS3RoFkdAorCqeK8+R3V9lChoBmgJaA9DCC9RvTUwHmVAlIaUUpRoFU3oA2gWR0CisOwmE5AAdX2UKGgGaAloD0MIWp2cobhlZ0CUhpRSlGgVTegDaBZHQKKyXzJ6po91fZQoaAZoCWgPQwgDC2DKQHRkQJSGlFKUaBVN6ANoFkdAorMSK1og3nV9lChoBmgJaA9DCCWTUzvDDENAlIaUUpRoFUuTaBZHQKK0X/DtPYZ1fZQoaAZoCWgPQwjMXradtthDQJSGlFKUaBVLnmgWR0CitxhcAzYVdX2UKGgGaAloD0MIjKNyEzWbZUCUhpRSlGgVTegDaBZHQKLElllK9PF1fZQoaAZoCWgPQwiYNEbrqI5FQJSGlFKUaBVLb2gWR0Cixfb3XZoPdX2UKGgGaAloD0MI2GFM+vucZUCUhpRSlGgVTegDaBZHQKLGuYIjW091fZQoaAZoCWgPQwhZF7fRAH5jQJSGlFKUaBVN6ANoFkdAosgUsMAmzHV9lChoBmgJaA9DCH47iQj/9l9AlIaUUpRoFU3oA2gWR0Ciyr+KbaysdX2UKGgGaAloD0MI1lJA2v+6ZECUhpRSlGgVTegDaBZHQKLLQH446wN1fZQoaAZoCWgPQwgq/YSz2+RgQJSGlFKUaBVN6ANoFkdAoswhbMX7+HV9lChoBmgJaA9DCFJgAUwZIWJAlIaUUpRoFU3oA2gWR0CizIS13MY/dX2UKGgGaAloD0MIN92yQ3yYYECUhpRSlGgVTegDaBZHQKLORssQNCt1fZQoaAZoCWgPQwgTSIld22phQJSGlFKUaBVN6ANoFkdAos8EuOCGvnV9lChoBmgJaA9DCL/yID1FQ2dAlIaUUpRoFU3oA2gWR0Cizxht1p0wdX2UKGgGaAloD0MIr7Mh/8yDZECUhpRSlGgVTegDaBZHQKLPe9hZyMl1fZQoaAZoCWgPQwh0toDQekJnQJSGlFKUaBVN6ANoFkdAotY2M+/xlXV9lChoBmgJaA9DCH5WmSmtkmJAlIaUUpRoFU3oA2gWR0Ci12wljVhDdX2UKGgGaAloD0MIp+fdWFAnZECUhpRSlGgVTegDaBZHQKLZAjQAuI11fZQoaAZoCWgPQwib5h2n6NleQJSGlFKUaBVN6ANoFkdAots0XSBsh3VlLg=="
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
76 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
},
|
78 |
+
"_n_updates": 1230,
|
79 |
+
"n_steps": 1024,
|
80 |
"gamma": 0.999,
|
81 |
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.05,
|
83 |
"vf_coef": 0.5,
|
84 |
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 128,
|
86 |
"n_epochs": 10,
|
87 |
"clip_range": {
|
88 |
":type:": "<class 'function'>",
|
ppo-params-lunarlander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 87929
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ecce29e63149c2d972626f7360796fc991fdd84a5884879f4887274d27f66276
|
3 |
size 87929
|
ppo-params-lunarlander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43201
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ec621d4772c2d8fed822979bafd7e4080ac941edb8f4a3c772cf7f6e79b26773
|
3 |
size 43201
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 280.15411971318423, "std_reward": 18.851003412459086, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-13T14:30:40.294420"}
|