Ross Wightman

rwightman

AI & ML interests

Computer vision, transfer learning, semi/self supervised learning, robotics.

Recent Activity

updated a collection about 7 hours ago
All the ImageNets
posted an update about 13 hours ago
updated a dataset about 14 hours ago
timm/mini-imagenet

Articles

Organizations

Posts 10

view post
Post
353
Want to validate some hparams or figure out what timm model to use before commiting to download or training with a large dataset? Try mini-imagenet: timm/mini-imagenet

I had this sitting on my drive and forgot where I pulled it together from. It's 100 classes of imagenet, 50k train and 10k val images (from ImageNet-1k train set), and 5k test images (from ImageNet-1k val set). 7.4GB instead of > 100GB for the full ImageNet-1k. This ver is not reduced resolution like some other 'mini' versions. Super easy to use with timm train/val scripts, checkout the dataset card.

I often check fine-tuning with even smaller datasets like:
* timm/resisc45
* timm/oxford-iiit-pet
But those are a bit small to train any modest size model w/o starting from pretrained weights.
view post
Post
1519
New MobileNetV4 weights were uploaded a few days ago -- more ImageNet-12k training at 384x384 for the speedy 'Conv Medium' models.

There are 3 weight variants here for those who like to tinker. On my hold-out eval they are ordered as below, not that different, but the Adopt 180 epochs closer to AdamW 250 than to AdamW 180.
* AdamW for 250 epochs - timm/mobilenetv4_conv_medium.e250_r384_in12k
* Adopt for 180 epochs - timm/mobilenetv4_conv_medium.e180_ad_r384_in12k
* AdamW for 180 epochs - timm/mobilenetv4_conv_medium.e180_r384_in12k

This was by request as a user reported impressive results using the 'Conv Large' ImagNet-12k pretrains as object detection backbones. ImageNet-1k fine-tunes are pending, the weights do behave differently with the 180 vs 250 epochs and the Adopt vs AdamW optimizer.