File size: 32,804 Bytes
18a9dce
 
 
 
499f0dc
18a9dce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
499f0dc
 
18a9dce
 
 
 
 
 
499f0dc
 
 
 
 
 
 
 
 
 
18a9dce
 
 
 
 
 
 
499f0dc
18a9dce
 
 
 
 
 
 
 
499f0dc
18a9dce
 
499f0dc
 
 
18a9dce
 
 
 
 
 
 
499f0dc
18a9dce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
499f0dc
 
 
18a9dce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
499f0dc
 
 
 
 
 
 
 
 
 
18a9dce
 
 
 
499f0dc
18a9dce
 
 
 
 
 
499f0dc
18a9dce
 
 
499f0dc
 
 
 
 
18a9dce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
499f0dc
18a9dce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
499f0dc
 
 
 
 
 
 
 
18a9dce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
499f0dc
 
 
 
 
 
 
 
 
 
 
 
 
 
18a9dce
 
 
 
 
499f0dc
 
 
 
 
 
 
 
 
18a9dce
499f0dc
 
 
18a9dce
 
499f0dc
 
 
 
 
 
18a9dce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
499f0dc
 
 
18a9dce
 
 
 
 
 
 
 
499f0dc
18a9dce
 
 
 
 
 
 
 
 
 
499f0dc
18a9dce
 
499f0dc
18a9dce
 
 
 
 
 
 
499f0dc
 
 
18a9dce
 
 
 
 
 
 
499f0dc
 
18a9dce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
499f0dc
 
 
18a9dce
 
 
 
 
 
 
 
499f0dc
18a9dce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
499f0dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18a9dce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
499f0dc
 
 
18a9dce
 
 
 
 
 
 
 
 
 
499f0dc
 
 
18a9dce
 
 
499f0dc
 
 
18a9dce
 
 
 
 
 
 
 
 
 
 
 
 
 
499f0dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18a9dce
 
 
 
 
 
499f0dc
 
 
 
 
 
 
 
18a9dce
 
 
 
 
 
 
 
499f0dc
 
 
 
 
18a9dce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
499f0dc
 
 
18a9dce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
499f0dc
18a9dce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
499f0dc
 
 
 
 
 
 
 
 
18a9dce
 
 
 
 
 
 
 
 
 
 
499f0dc
 
 
 
 
 
 
 
 
18a9dce
 
 
 
 
 
 
 
 
 
499f0dc
 
 
 
 
 
 
 
 
18a9dce
 
 
 
 
 
 
 
 
 
499f0dc
 
 
 
 
 
 
 
 
18a9dce
 
 
 
 
 
 
 
 
 
499f0dc
 
 
 
 
 
 
 
 
18a9dce
 
 
 
 
 
 
 
 
 
499f0dc
 
 
 
 
 
 
 
 
18a9dce
 
 
 
 
 
 
 
 
 
499f0dc
 
 
 
 
 
 
 
 
18a9dce
 
 
 
 
 
 
 
 
499f0dc
 
 
 
 
 
 
 
 
18a9dce
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
"""
original code from rwightman:
https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
"""

from functools import partial
from collections import OrderedDict

import torch
import torch.nn as nn
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.hub
from functools import partial
# import mat
# from vision_transformer.ir50 import Backbone


import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.hub
from functools import partial
import math

from timm.layers import DropPath, to_2tuple, trunc_normal_
from timm.models import register_model
from timm.models.vision_transformer import _cfg, Mlp, Block
from .ir50 import Backbone


def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1):
    """3x3 convolution with padding"""
    return nn.Conv2d(
        in_planes,
        out_planes,
        kernel_size=3,
        stride=stride,
        padding=dilation,
        groups=groups,
        bias=False,
        dilation=dilation,
    )


def conv1x1(in_planes, out_planes, stride=1):
    """1x1 convolution"""
    return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)


def drop_path(x, drop_prob: float = 0.0, training: bool = False):
    """
    Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
    This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,
    the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
    See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for
    changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use
    'survival rate' as the argument.
    """
    if drop_prob == 0.0 or not training:
        return x
    keep_prob = 1 - drop_prob
    shape = (x.shape[0],) + (1,) * (
        x.ndim - 1
    )  # work with diff dim tensors, not just 2D ConvNets
    random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
    random_tensor.floor_()  # binarize
    output = x.div(keep_prob) * random_tensor
    return output


class BasicBlock(nn.Module):
    __constants__ = ["downsample"]

    def __init__(self, inplanes, planes, stride=1, downsample=None):
        super(BasicBlock, self).__init__()
        norm_layer = nn.BatchNorm2d
        self.conv1 = conv3x3(inplanes, planes, stride)
        self.bn1 = norm_layer(planes)
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = conv3x3(planes, planes)
        self.bn2 = norm_layer(planes)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        identity = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)
        out = self.conv2(out)
        out = self.bn2(out)

        if self.downsample is not None:
            identity = self.downsample(x)

        out += identity
        out = self.relu(out)

        return out


class DropPath(nn.Module):
    """
    Drop paths (Stochastic Depth) per sample  (when applied in main path of residual blocks).
    """

    def __init__(self, drop_prob=None):
        super(DropPath, self).__init__()
        self.drop_prob = drop_prob

    def forward(self, x):
        return drop_path(x, self.drop_prob, self.training)


class PatchEmbed(nn.Module):
    """
    2D Image to Patch Embedding
    """

    def __init__(
        self, img_size=14, patch_size=16, in_c=256, embed_dim=768, norm_layer=None
    ):
        super().__init__()
        img_size = (img_size, img_size)
        patch_size = (patch_size, patch_size)
        self.img_size = img_size
        self.patch_size = patch_size
        self.grid_size = (img_size[0] // patch_size[0], img_size[1] // patch_size[1])
        self.num_patches = self.grid_size[0] * self.grid_size[1]

        self.proj = nn.Conv2d(256, 768, kernel_size=1)
        self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()

    def forward(self, x):
        B, C, H, W = x.shape
        # assert H == self.img_size[0] and W == self.img_size[1], \
        #     f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
        # print(x.shape)

        # flatten: [B, C, H, W] -> [B, C, HW]
        # transpose: [B, C, HW] -> [B, HW, C]
        x = self.proj(x).flatten(2).transpose(1, 2)
        x = self.norm(x)
        return x


class Attention(nn.Module):
    def __init__(
        self,
        dim,
        in_chans,  # 输入token的dim
        num_heads=8,
        qkv_bias=False,
        qk_scale=None,
        attn_drop_ratio=0.0,
        proj_drop_ratio=0.0,
    ):
        super(Attention, self).__init__()
        self.num_heads = 8
        self.img_chanel = in_chans + 1
        head_dim = dim // num_heads
        self.scale = head_dim**-0.5
        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop_ratio)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop_ratio)

    def forward(self, x):
        x_img = x[:, : self.img_chanel, :]
        # [batch_size, num_patches + 1, total_embed_dim]
        B, N, C = x_img.shape
        # print(C)
        qkv = (
            self.qkv(x_img)
            .reshape(B, N, 3, self.num_heads, C // self.num_heads)
            .permute(2, 0, 3, 1, 4)
        )
        q, k, v = qkv[0], qkv[1], qkv[2]
        # k, v = kv.unbind(0)  # make torchscript happy (cannot use tensor as tuple)
        # q = x_img.reshape(B, -1, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
        attn = (q @ k.transpose(-2, -1)) * self.scale
        attn = attn.softmax(dim=-1)
        attn = self.attn_drop(attn)

        x_img = (attn @ v).transpose(1, 2).reshape(B, N, C)
        x_img = self.proj(x_img)
        x_img = self.proj_drop(x_img)
        #
        #
        # # qkv(): -> [batch_size, num_patches + 1, 3 * total_embed_dim]
        # # reshape: -> [batch_size, num_patches + 1, 3, num_heads, embed_dim_per_head]
        # # permute: -> [3, batch_size, num_heads, num_patches + 1, embed_dim_per_head]
        # qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
        # # [batch_size, num_heads, num_patches + 1, embed_dim_per_head]
        # q, k, v = qkv[0], qkv[1], qkv[2]  # make torchscript happy (cannot use tensor as tuple)
        #
        # # transpose: -> [batch_size, num_heads, embed_dim_per_head, num_patches + 1]
        # # @: multiply -> [batch_size, num_heads, num_patches + 1, num_patches + 1]
        # attn = (q @ k.transpose(-2, -1)) * self.scale
        # attn = attn.softmax(dim=-1)
        # attn = self.attn_drop(attn)
        #
        # # @: multiply -> [batch_size, num_heads, num_patches + 1, embed_dim_per_head]
        # # transpose: -> [batch_size, num_patches + 1, num_heads, embed_dim_per_head]
        # # reshape: -> [batch_size, num_patches + 1, total_embed_dim]
        # x = (attn @ v).transpose(1, 2).reshape(B, N, C)
        # x = self.proj(x)
        # x = self.proj_drop(x)
        return x_img


class AttentionBlock(nn.Module):
    __constants__ = ["downsample"]

    def __init__(self, inplanes, planes, stride=1, downsample=None):
        super(AttentionBlock, self).__init__()
        norm_layer = nn.BatchNorm2d
        self.conv1 = conv3x3(inplanes, planes, stride)
        self.bn1 = norm_layer(planes)
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = conv3x3(planes, planes)
        self.bn2 = norm_layer(planes)
        self.downsample = downsample
        self.stride = stride
        # self.cbam = CBAM(planes, 16)
        self.inplanes = inplanes
        self.eca_block = eca_block()

    def forward(self, x):
        identity = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)
        inplanes = self.inplanes
        out = self.eca_block(out)
        if self.downsample is not None:
            identity = self.downsample(x)

        out += identity
        out = self.relu(out)

        return out


class Mlp(nn.Module):
    """
    MLP as used in Vision Transformer, MLP-Mixer and related networks
    """

    def __init__(
        self,
        in_features,
        hidden_features=None,
        out_features=None,
        act_layer=nn.GELU,
        drop=0.0,
    ):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Linear(in_features, hidden_features)
        self.act = act_layer()
        self.fc2 = nn.Linear(hidden_features, out_features)
        self.drop = nn.Dropout(drop)

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop(x)
        x = self.fc2(x)
        x = self.drop(x)
        return x


class Block(nn.Module):
    def __init__(
        self,
        dim,
        in_chans,
        num_heads,
        mlp_ratio=4.0,
        qkv_bias=False,
        qk_scale=None,
        drop_ratio=0.0,
        attn_drop_ratio=0.0,
        drop_path_ratio=0.0,
        act_layer=nn.GELU,
        norm_layer=nn.LayerNorm,
    ):
        super(Block, self).__init__()
        self.norm1 = norm_layer(dim)
        self.img_chanel = in_chans + 1

        self.conv = nn.Conv1d(self.img_chanel, self.img_chanel, 1)
        self.attn = Attention(
            dim,
            in_chans=in_chans,
            num_heads=num_heads,
            qkv_bias=qkv_bias,
            qk_scale=qk_scale,
            attn_drop_ratio=attn_drop_ratio,
            proj_drop_ratio=drop_ratio,
        )
        # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
        self.drop_path = (
            DropPath(drop_path_ratio) if drop_path_ratio > 0.0 else nn.Identity()
        )
        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(
            in_features=dim,
            hidden_features=mlp_hidden_dim,
            act_layer=act_layer,
            drop=drop_ratio,
        )

    def forward(self, x):
        # x = x + self.drop_path(self.attn(self.norm1(x)))
        # x = x + self.drop_path(self.mlp(self.norm2(x)))

        x_img = x
        # [:, :self.img_chanel, :]
        # x_lm = x[:, self.img_chanel:, :]
        x_img = x_img + self.drop_path(self.attn(self.norm1(x)))
        x = x_img + self.drop_path(self.mlp(self.norm2(x_img)))
        #
        # x_lm = x_lm + self.drop_path(self.attn_lm(self.norm3(x)))
        # x_lm = x_lm + self.drop_path(self.mlp2(self.norm4(x_lm)))
        # x = torch.cat((x_img, x_lm), dim=1)
        # x = self.conv(x)

        return x


class ClassificationHead(nn.Module):
    def __init__(self, input_dim: int, target_dim: int):
        super().__init__()
        self.linear = torch.nn.Linear(input_dim, target_dim)

    def forward(self, x):
        x = x.view(x.size(0), -1)
        y_hat = self.linear(x)
        return y_hat


def load_pretrained_weights(model, checkpoint):
    import collections

    if "state_dict" in checkpoint:
        state_dict = checkpoint["state_dict"]
    else:
        state_dict = checkpoint
    model_dict = model.state_dict()
    new_state_dict = collections.OrderedDict()
    matched_layers, discarded_layers = [], []
    for k, v in state_dict.items():
        # If the pretrained state_dict was saved as nn.DataParallel,
        # keys would contain "module.", which should be ignored.
        if k.startswith("module."):
            k = k[7:]
        if k in model_dict and model_dict[k].size() == v.size():
            new_state_dict[k] = v
            matched_layers.append(k)
        else:
            discarded_layers.append(k)
    # new_state_dict.requires_grad = False
    model_dict.update(new_state_dict)

    model.load_state_dict(model_dict)
    print("load_weight", len(matched_layers))
    return model


class eca_block(nn.Module):
    def __init__(self, channel=128, b=1, gamma=2):
        super(eca_block, self).__init__()
        kernel_size = int(abs((math.log(channel, 2) + b) / gamma))
        kernel_size = kernel_size if kernel_size % 2 else kernel_size + 1

        self.avg_pool = nn.AdaptiveAvgPool2d(1)
        self.conv = nn.Conv1d(
            1, 1, kernel_size=kernel_size, padding=(kernel_size - 1) // 2, bias=False
        )
        self.sigmoid = nn.Sigmoid()

    def forward(self, x):
        y = self.avg_pool(x)
        y = self.conv(y.squeeze(-1).transpose(-1, -2)).transpose(-1, -2).unsqueeze(-1)
        y = self.sigmoid(y)
        return x * y.expand_as(x)


#
#
# class IR20(nn.Module):
#     def __init__(self, img_size_=112, num_classes=7, layers=[2, 2, 2, 2]):
#         super().__init__()
#         norm_layer = nn.BatchNorm2d
#         self.img_size = img_size_
#         self._norm_layer = norm_layer
#         self.num_classes = num_classes
#         self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
#         self.bn1 = norm_layer(64)
#         self.relu = nn.ReLU(inplace=True)
#         self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
#         # self.face_landback = MobileFaceNet([112, 112],136)
#         # face_landback_checkpoint = torch.load('./models/pretrain/mobilefacenet_model_best.pth.tar', map_location=lambda storage, loc: storage)
#         # self.face_landback.load_state_dict(face_landback_checkpoint['state_dict'])
#         self.layer1 = self._make_layer(BasicBlock, 64, 64, layers[0])
#         self.layer2 = self._make_layer(BasicBlock, 64, 128, layers[1], stride=2)
#         self.layer3 = self._make_layer(AttentionBlock, 128, 256, layers[2], stride=2)
#         self.layer4 = self._make_layer(AttentionBlock, 256, 256, layers[3], stride=1)
#         self.ir_back = Backbone(50, 51, 52, 0.0, 'ir')
#         self.ir_layer = nn.Linear(1024, 512)
#         # ir_checkpoint = torch.load(r'F:\0815crossvit\vision_transformer\models\pretrain\Pretrained_on_MSCeleb.pth.tar',
#         #                          map_location=lambda storage, loc: storage)
#         # ir_checkpoint = ir_checkpoint['state_dict']
#         # self.face_landback.load_state_dict(face_landback_checkpoint['state_dict'])
#         # checkpoint = torch.load('./checkpoint/Pretrained_on_MSCeleb.pth.tar')
#         # pre_trained_dict = checkpoint['state_dict']
#         # IR20.load_state_dict(ir_checkpoint, strict=False)
#         # self.IR = load_pretrained_weights(IR, ir_checkpoint)
#
#     def _make_layer(self, block, inplanes, planes, blocks, stride=1):
#         norm_layer = self._norm_layer
#         downsample = None
#         if stride != 1 or inplanes != planes:
#             downsample = nn.Sequential(conv1x1(inplanes, planes, stride), norm_layer(planes))
#         layers = []
#         layers.append(block(inplanes, planes, stride, downsample))
#         inplanes = planes
#         for _ in range(1, blocks):
#             layers.append(block(inplanes, planes))
#         return nn.Sequential(*layers)
#
#     def forward(self, x):
#         x_ir = self.ir_back(x)
#         # x_ir = self.ir_layer(x_ir)
#         # print(x_ir.shape)
#         # x = F.interpolate(x, size=112)
#         # x = self.conv1(x)
#         # x = self.bn1(x)
#         # x = self.relu(x)
#         # x = self.maxpool(x)
#         #
#         # x = self.layer1(x)
#         # x = self.layer2(x)
#         # x = self.layer3(x)
#         # x = self.layer4(x)
#         # print(x.shape)
#         # print(x)
#         out = x_ir
#
#         return out
#
#
# class IR(nn.Module):
#     def __init__(self, img_size_=112, num_classes=7):
#         super().__init__()
#         depth = 8
#         # if type == "small":
#         #     depth = 4
#         # if type == "base":
#         #     depth = 6
#         # if type == "large":
#         #     depth = 8
#
#         self.img_size = img_size_
#         self.num_classes = num_classes
#         self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
#         # self.bn1 = norm_layer(64)
#         self.relu = nn.ReLU(inplace=True)
#         self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
#         # self.face_landback = MobileFaceNet([112, 112],136)
#         # face_landback_checkpoint = torch.load('./models/pretrain/mobilefacenet_model_best.pth.tar', map_location=lambda storage, loc: storage)
#         # self.face_landback.load_state_dict(face_landback_checkpoint['state_dict'])
#
#         # for param in self.face_landback.parameters():
#         #     param.requires_grad = False
#
#         ###########################################################################333
#
#         self.ir_back = IR20()
#
#         # ir_checkpoint = torch.load(r'F:\0815crossvit\vision_transformer\models\pretrain\ir50.pth',
#         #                            map_location=lambda storage, loc: storage)
#         # # ir_checkpoint = ir_checkpoint["model"]
#         # self.ir_back = load_pretrained_weights(self.ir_back, ir_checkpoint)
#         # load_state_dict(checkpoint_model, strict=False)
#         # self.ir_layer = nn.Linear(1024,512)
#
#         #############################################################3
#         #
#         # self.pyramid_fuse = HyVisionTransformer(in_chans=49, q_chanel = 49, embed_dim=512,
#         #                                      depth=depth, num_heads=8, mlp_ratio=2.,
#         #                                      drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1)
#
#         # self.se_block = SE_block(input_dim=512)
#         self.head = ClassificationHead(input_dim=768, target_dim=self.num_classes)
#
#     def forward(self, x):
#         B_ = x.shape[0]
#         # x_face = F.interpolate(x, size=112)
#         # _, x_face = self.face_landback(x_face)
#         # x_face = x_face.view(B_, -1, 49).transpose(1,2)
#         ###############  landmark x_face ([B, 49, 512])
#         x_ir = self.ir_back(x)
#         # print(x_ir.shape)
#         # x_ir = self.ir_layer(x_ir)
#         # print(x_ir.shape)
#         ###############  image x_ir ([B, 49, 512])
#
#         # y_hat = self.pyramid_fuse(x_ir, x_face)
#         # y_hat = self.se_block(y_hat)
#         # y_feat = y_hat
#
#         # out = self.head(x_ir)
#
#         out = x_ir
#         return out


class eca_block(nn.Module):
    def __init__(self, channel=196, b=1, gamma=2):
        super(eca_block, self).__init__()
        kernel_size = int(abs((math.log(channel, 2) + b) / gamma))
        kernel_size = kernel_size if kernel_size % 2 else kernel_size + 1

        self.avg_pool = nn.AdaptiveAvgPool2d(1)
        self.conv = nn.Conv1d(
            1, 1, kernel_size=kernel_size, padding=(kernel_size - 1) // 2, bias=False
        )
        self.sigmoid = nn.Sigmoid()

    def forward(self, x):
        y = self.avg_pool(x)
        y = self.conv(y.squeeze(-1).transpose(-1, -2)).transpose(-1, -2).unsqueeze(-1)
        y = self.sigmoid(y)
        return x * y.expand_as(x)


class SE_block(nn.Module):
    def __init__(self, input_dim: int):
        super().__init__()
        self.linear1 = torch.nn.Linear(input_dim, input_dim)
        self.relu = nn.ReLU()
        self.linear2 = torch.nn.Linear(input_dim, input_dim)
        self.sigmod = nn.Sigmoid()

    def forward(self, x):
        x1 = self.linear1(x)
        x1 = self.relu(x1)
        x1 = self.linear2(x1)
        x1 = self.sigmod(x1)
        x = x * x1
        return x


class VisionTransformer(nn.Module):
    def __init__(
        self,
        img_size=14,
        patch_size=14,
        in_c=147,
        num_classes=8,
        embed_dim=768,
        depth=6,
        num_heads=8,
        mlp_ratio=4.0,
        qkv_bias=True,
        qk_scale=None,
        representation_size=None,
        distilled=False,
        drop_ratio=0.0,
        attn_drop_ratio=0.0,
        drop_path_ratio=0.0,
        embed_layer=PatchEmbed,
        norm_layer=None,
        act_layer=None,
    ):
        """
        Args:
            img_size (int, tuple): input image size
            patch_size (int, tuple): patch size
            in_c (int): number of input channels
            num_classes (int): number of classes for classification head
            embed_dim (int): embedding dimension
            depth (int): depth of transformer
            num_heads (int): number of attention heads
            mlp_ratio (int): ratio of mlp hidden dim to embedding dim
            qkv_bias (bool): enable bias for qkv if True
            qk_scale (float): override default qk scale of head_dim ** -0.5 if set
            representation_size (Optional[int]): enable and set representation layer (pre-logits) to this value if set
            distilled (bool): model includes a distillation token and head as in DeiT models
            drop_ratio (float): dropout rate
            attn_drop_ratio (float): attention dropout rate
            drop_path_ratio (float): stochastic depth rate
            embed_layer (nn.Module): patch embedding layer
            norm_layer: (nn.Module): normalization layer
        """
        super(VisionTransformer, self).__init__()
        self.num_classes = num_classes
        self.num_features = self.embed_dim = (
            embed_dim  # num_features for consistency with other models
        )
        self.num_tokens = 2 if distilled else 1
        norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6)
        act_layer = act_layer or nn.GELU

        self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
        self.pos_embed = nn.Parameter(torch.zeros(1, in_c + 1, embed_dim))
        self.pos_drop = nn.Dropout(p=drop_ratio)

        self.se_block = SE_block(input_dim=embed_dim)

        self.patch_embed = embed_layer(
            img_size=img_size, patch_size=patch_size, in_c=256, embed_dim=768
        )
        num_patches = self.patch_embed.num_patches
        self.head = ClassificationHead(input_dim=embed_dim, target_dim=self.num_classes)
        self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
        self.dist_token = (
            nn.Parameter(torch.zeros(1, 1, embed_dim)) if distilled else None
        )
        # self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + self.num_tokens, embed_dim))
        self.pos_drop = nn.Dropout(p=drop_ratio)
        # self.IR = IR()
        self.eca_block = eca_block()

        # self.ir_back = Backbone(50, 0.0, 'ir')
        # ir_checkpoint = torch.load('./models/pretrain/ir50.pth', map_location=lambda storage, loc: storage)
        # # ir_checkpoint = ir_checkpoint["model"]
        # self.ir_back = load_pretrained_weights(self.ir_back, ir_checkpoint)

        self.CON1 = nn.Conv2d(256, 768, kernel_size=1, stride=1, bias=False)
        self.IRLinear1 = nn.Linear(1024, 768)
        self.IRLinear2 = nn.Linear(768, 512)
        self.eca_block = eca_block()
        dpr = [
            x.item() for x in torch.linspace(0, drop_path_ratio, depth)
        ]  # stochastic depth decay rule
        self.blocks = nn.Sequential(
            *[
                Block(
                    dim=embed_dim,
                    in_chans=in_c,
                    num_heads=num_heads,
                    mlp_ratio=mlp_ratio,
                    qkv_bias=qkv_bias,
                    qk_scale=qk_scale,
                    drop_ratio=drop_ratio,
                    attn_drop_ratio=attn_drop_ratio,
                    drop_path_ratio=dpr[i],
                    norm_layer=norm_layer,
                    act_layer=act_layer,
                )
                for i in range(depth)
            ]
        )
        self.norm = norm_layer(embed_dim)

        # Representation layer
        if representation_size and not distilled:
            self.has_logits = True
            self.num_features = representation_size
            self.pre_logits = nn.Sequential(
                OrderedDict(
                    [
                        ("fc", nn.Linear(embed_dim, representation_size)),
                        ("act", nn.Tanh()),
                    ]
                )
            )
        else:
            self.has_logits = False
            self.pre_logits = nn.Identity()

        # Classifier head(s)
        # self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()
        self.head_dist = None
        if distilled:
            self.head_dist = (
                nn.Linear(self.embed_dim, self.num_classes)
                if num_classes > 0
                else nn.Identity()
            )

        # Weight init
        nn.init.trunc_normal_(self.pos_embed, std=0.02)
        if self.dist_token is not None:
            nn.init.trunc_normal_(self.dist_token, std=0.02)

        nn.init.trunc_normal_(self.cls_token, std=0.02)
        self.apply(_init_vit_weights)

    def forward_features(self, x):
        # [B, C, H, W] -> [B, num_patches, embed_dim]
        # x = self.patch_embed(x)  # [B, 196, 768]
        # [1, 1, 768] -> [B, 1, 768]
        # print(x.shape)

        cls_token = self.cls_token.expand(x.shape[0], -1, -1)
        if self.dist_token is None:
            x = torch.cat((cls_token, x), dim=1)  # [B, 197, 768]
        else:
            x = torch.cat(
                (cls_token, self.dist_token.expand(x.shape[0], -1, -1), x), dim=1
            )
        # print(x.shape)
        x = self.pos_drop(x + self.pos_embed)
        x = self.blocks(x)
        x = self.norm(x)
        if self.dist_token is None:
            return self.pre_logits(x[:, 0])
        else:
            return x[:, 0], x[:, 1]

    def forward(self, x):
        # B = x.shape[0]
        # print(x)
        # x = self.eca_block(x)
        # x = self.IR(x)
        # x = eca_block(x)
        # x = self.ir_back(x)
        # print(x.shape)
        # x = self.CON1(x)
        # x = x.view(-1, 196, 768)
        #
        # # print(x.shape)
        # # x = self.IRLinear1(x)
        # # print(x)
        # x_cls = torch.mean(x, 1).view(B, 1, -1)
        # x = torch.cat((x_cls, x), dim=1)
        # # print(x.shape)
        # x = self.pos_drop(x + self.pos_embed)
        # # print(x.shape)
        # x = self.blocks(x)
        # # print(x)
        # x = self.norm(x)
        # # print(x)
        # # x1 = self.IRLinear2(x)
        # x1 = x[:, 0, :]

        # print(x1)
        # print(x1.shape)

        x = self.forward_features(x)
        # # print(x.shape)
        # if self.head_dist is not None:
        #     x, x_dist = self.head(x[0]), self.head_dist(x[1])
        #     if self.training and not torch.jit.is_scripting():
        #         # during inference, return the average of both classifier predictions
        #         return x, x_dist
        #     else:
        #         return (x + x_dist) / 2
        # else:
        # print(x.shape)
        x = self.se_block(x)

        x1 = self.head(x)

        return x1


def _init_vit_weights(m):
    """
    ViT weight initialization
    :param m: module
    """
    if isinstance(m, nn.Linear):
        nn.init.trunc_normal_(m.weight, std=0.01)
        if m.bias is not None:
            nn.init.zeros_(m.bias)
    elif isinstance(m, nn.Conv2d):
        nn.init.kaiming_normal_(m.weight, mode="fan_out")
        if m.bias is not None:
            nn.init.zeros_(m.bias)
    elif isinstance(m, nn.LayerNorm):
        nn.init.zeros_(m.bias)
        nn.init.ones_(m.weight)


def vit_base_patch16_224(num_classes: int = 7):
    """
    ViT-Base model (ViT-B/16) from original paper (https://arxiv.org/abs/2010.11929).
    ImageNet-1k weights @ 224x224, source https://github.com/google-research/vision_transformer.
    weights ported from official Google JAX impl:
    链接: https://pan.baidu.com/s/1zqb08naP0RPqqfSXfkB2EA  密码: eu9f
    """
    model = VisionTransformer(
        img_size=224,
        patch_size=16,
        embed_dim=768,
        depth=12,
        num_heads=12,
        representation_size=None,
        num_classes=num_classes,
    )

    return model


def vit_base_patch16_224_in21k(num_classes: int = 21843, has_logits: bool = True):
    """
    ViT-Base model (ViT-B/16) from original paper (https://arxiv.org/abs/2010.11929).
    ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer.
    weights ported from official Google JAX impl:
    https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_patch16_224_in21k-e5005f0a.pth
    """
    model = VisionTransformer(
        img_size=224,
        patch_size=16,
        embed_dim=768,
        depth=12,
        num_heads=12,
        representation_size=768 if has_logits else None,
        num_classes=num_classes,
    )
    return model


def vit_base_patch32_224(num_classes: int = 1000):
    """
    ViT-Base model (ViT-B/32) from original paper (https://arxiv.org/abs/2010.11929).
    ImageNet-1k weights @ 224x224, source https://github.com/google-research/vision_transformer.
    weights ported from official Google JAX impl:
    链接: https://pan.baidu.com/s/1hCv0U8pQomwAtHBYc4hmZg  密码: s5hl
    """
    model = VisionTransformer(
        img_size=224,
        patch_size=32,
        embed_dim=768,
        depth=12,
        num_heads=12,
        representation_size=None,
        num_classes=num_classes,
    )
    return model


def vit_base_patch32_224_in21k(num_classes: int = 21843, has_logits: bool = True):
    """
    ViT-Base model (ViT-B/32) from original paper (https://arxiv.org/abs/2010.11929).
    ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer.
    weights ported from official Google JAX impl:
    https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_patch32_224_in21k-8db57226.pth
    """
    model = VisionTransformer(
        img_size=224,
        patch_size=32,
        embed_dim=768,
        depth=12,
        num_heads=12,
        representation_size=768 if has_logits else None,
        num_classes=num_classes,
    )
    return model


def vit_large_patch16_224(num_classes: int = 1000):
    """
    ViT-Large model (ViT-L/16) from original paper (https://arxiv.org/abs/2010.11929).
    ImageNet-1k weights @ 224x224, source https://github.com/google-research/vision_transformer.
    weights ported from official Google JAX impl:
    链接: https://pan.baidu.com/s/1cxBgZJJ6qUWPSBNcE4TdRQ  密码: qqt8
    """
    model = VisionTransformer(
        img_size=224,
        patch_size=16,
        embed_dim=1024,
        depth=24,
        num_heads=16,
        representation_size=None,
        num_classes=num_classes,
    )
    return model


def vit_large_patch16_224_in21k(num_classes: int = 21843, has_logits: bool = True):
    """
    ViT-Large model (ViT-L/16) from original paper (https://arxiv.org/abs/2010.11929).
    ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer.
    weights ported from official Google JAX impl:
    https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_patch16_224_in21k-606da67d.pth
    """
    model = VisionTransformer(
        img_size=224,
        patch_size=16,
        embed_dim=1024,
        depth=24,
        num_heads=16,
        representation_size=1024 if has_logits else None,
        num_classes=num_classes,
    )
    return model


def vit_large_patch32_224_in21k(num_classes: int = 21843, has_logits: bool = True):
    """
    ViT-Large model (ViT-L/32) from original paper (https://arxiv.org/abs/2010.11929).
    ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer.
    weights ported from official Google JAX impl:
    https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_patch32_224_in21k-9046d2e7.pth
    """
    model = VisionTransformer(
        img_size=224,
        patch_size=32,
        embed_dim=1024,
        depth=24,
        num_heads=16,
        representation_size=1024 if has_logits else None,
        num_classes=num_classes,
    )
    return model


def vit_huge_patch14_224_in21k(num_classes: int = 21843, has_logits: bool = True):
    """
    ViT-Huge model (ViT-H/14) from original paper (https://arxiv.org/abs/2010.11929).
    ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer.
    NOTE: converted weights not currently available, too large for github release hosting.
    """
    model = VisionTransformer(
        img_size=224,
        patch_size=14,
        embed_dim=1280,
        depth=32,
        num_heads=16,
        representation_size=1280 if has_logits else None,
        num_classes=num_classes,
    )
    return model