File size: 7,430 Bytes
18a9dce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
from torch.nn import Linear, Conv2d, BatchNorm1d, BatchNorm2d, PReLU, ReLU, Sigmoid, Dropout2d, Dropout, AvgPool2d, \
    MaxPool2d, AdaptiveAvgPool2d, Sequential, Module, Parameter
import torch.nn.functional as F
import torch
import torch.nn as nn
from collections import namedtuple
import math
import pdb


##################################  Original Arcface Model #############################################################
######## ccc#######################
class Flatten(Module):
    def forward(self, input):
        return input.view(input.size(0), -1)


##################################  MobileFaceNet #############################################################

class Conv_block(Module):
    def __init__(self, in_c, out_c, kernel=(1, 1), stride=(1, 1), padding=(0, 0), groups=1):
        super(Conv_block, self).__init__()
        self.conv = Conv2d(in_c, out_channels=out_c, kernel_size=kernel, groups=groups, stride=stride, padding=padding,
                           bias=False)
        self.bn = BatchNorm2d(out_c)
        self.prelu = PReLU(out_c)

    def forward(self, x):
        x = self.conv(x)
        x = self.bn(x)
        x = self.prelu(x)
        return x


class Linear_block(Module):
    def __init__(self, in_c, out_c, kernel=(1, 1), stride=(1, 1), padding=(0, 0), groups=1):
        super(Linear_block, self).__init__()
        self.conv = Conv2d(in_c, out_channels=out_c, kernel_size=kernel, groups=groups, stride=stride, padding=padding,
                           bias=False)
        self.bn = BatchNorm2d(out_c)

    def forward(self, x):
        x = self.conv(x)
        x = self.bn(x)
        return x


class Depth_Wise(Module):
    def __init__(self, in_c, out_c, residual=False, kernel=(3, 3), stride=(2, 2), padding=(1, 1), groups=1):
        super(Depth_Wise, self).__init__()
        self.conv = Conv_block(in_c, out_c=groups, kernel=(1, 1), padding=(0, 0), stride=(1, 1))
        self.conv_dw = Conv_block(groups, groups, groups=groups, kernel=kernel, padding=padding, stride=stride)
        self.project = Linear_block(groups, out_c, kernel=(1, 1), padding=(0, 0), stride=(1, 1))
        self.residual = residual

    def forward(self, x):
        if self.residual:
            short_cut = x
        x = self.conv(x)
        x = self.conv_dw(x)
        x = self.project(x)
        if self.residual:
            output = short_cut + x
        else:
            output = x
        return output


class Residual(Module):
    def __init__(self, c, num_block, groups, kernel=(3, 3), stride=(1, 1), padding=(1, 1)):
        super(Residual, self).__init__()
        modules = []
        for _ in range(num_block):
            modules.append(
                Depth_Wise(c, c, residual=True, kernel=kernel, padding=padding, stride=stride, groups=groups))
        self.model = Sequential(*modules)

    def forward(self, x):
        return self.model(x)


class GNAP(Module):
    def __init__(self, embedding_size):
        super(GNAP, self).__init__()
        assert embedding_size == 512
        self.bn1 = BatchNorm2d(512, affine=False)
        self.pool = nn.AdaptiveAvgPool2d((1, 1))

        self.bn2 = BatchNorm1d(512, affine=False)

    def forward(self, x):
        x = self.bn1(x)
        x_norm = torch.norm(x, 2, 1, True)
        x_norm_mean = torch.mean(x_norm)
        weight = x_norm_mean / x_norm
        x = x * weight
        x = self.pool(x)
        x = x.view(x.shape[0], -1)
        feature = self.bn2(x)
        return feature


class GDC(Module):
    def __init__(self, embedding_size):
        super(GDC, self).__init__()
        self.conv_6_dw = Linear_block(512, 512, groups=512, kernel=(7, 7), stride=(1, 1), padding=(0, 0))
        self.conv_6_flatten = Flatten()
        self.linear = Linear(512, embedding_size, bias=False)
        # self.bn = BatchNorm1d(embedding_size, affine=False)
        self.bn = BatchNorm1d(embedding_size)

    def forward(self, x):
        x = self.conv_6_dw(x)    #### [B, 512, 1, 1]
        x = self.conv_6_flatten(x)   #### [B, 512]
        x = self.linear(x)      #### [B, 136]
        x = self.bn(x)
        return x


class MobileFaceNet(Module):
    def __init__(self, input_size, embedding_size=512, output_name="GDC"):
        super(MobileFaceNet, self).__init__()
        assert output_name in ["GNAP", 'GDC']
        assert input_size[0] in [112]
        self.conv1 = Conv_block(3, 64, kernel=(3, 3), stride=(2, 2), padding=(1, 1))
        self.conv2_dw = Conv_block(64, 64, kernel=(3, 3), stride=(1, 1), padding=(1, 1), groups=64)
        self.conv_23 = Depth_Wise(64, 64, kernel=(3, 3), stride=(2, 2), padding=(1, 1), groups=128)
        self.conv_3 = Residual(64, num_block=4, groups=128, kernel=(3, 3), stride=(1, 1), padding=(1, 1))
        self.conv_34 = Depth_Wise(64, 128, kernel=(3, 3), stride=(2, 2), padding=(1, 1), groups=256)
        self.conv_4 = Residual(128, num_block=6, groups=256, kernel=(3, 3), stride=(1, 1), padding=(1, 1))
        self.conv_45 = Depth_Wise(128, 128, kernel=(3, 3), stride=(2, 2), padding=(1, 1), groups=512)
        self.conv_5 = Residual(128, num_block=2, groups=256, kernel=(3, 3), stride=(1, 1), padding=(1, 1))
        self.conv_6_sep = Conv_block(128, 512, kernel=(1, 1), stride=(1, 1), padding=(0, 0))
        if output_name == "GNAP":
            self.output_layer = GNAP(512)
        else:
            self.output_layer = GDC(embedding_size)

        self._initialize_weights()

    def _initialize_weights(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
                if m.bias is not None:
                    m.bias.data.zero_()
            elif isinstance(m, nn.BatchNorm2d):
                m.weight.data.fill_(1)
                m.bias.data.zero_()
            elif isinstance(m, nn.Linear):
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
                if m.bias is not None:
                    m.bias.data.zero_()

    def forward(self, x):
        out = self.conv1(x)
        # print(out.shape)
        out = self.conv2_dw(out)
        # print(out.shape)
        out = self.conv_23(out)
        # print(out.shape)
        out3 = self.conv_3(out)
        # print(out.shape)
        out = self.conv_34(out3)
        # print(out.shape)
        out4 = self.conv_4(out)  # [128, 14, 14]
        # print(out.shape)
        out = self.conv_45(out4)  # [128, 7, 7]
        # print(out.shape)
        out = self.conv_5(out)  # [128, 7, 7]
        # print(out.shape)
        conv_features = self.conv_6_sep(out)    ##### [B, 512, 7, 7]
        out = self.output_layer(conv_features)  ##### [B, 136]
        return out3, out4, conv_features


# model = MobileFaceNet([112, 112],136)
# input = torch.ones(8,3,112,112).cuda()
# model = model.cuda()
# x = model(input)
# import numpy as np
# parameters = model.parameters()
# parameters = sum([np.prod(p.size()) for p in parameters]) / 1_000_000
# print('Total Parameters: %.3fM' % parameters)
#
#
# from ptflops import get_model_complexity_info
# macs, params = get_model_complexity_info(model, (3, 112, 112), as_strings=True,
#                                        print_per_layer_stat=True, verbose=True)
# print('{:<30}  {:<8}'.format('Computational complexity: ', macs))
# print('{:<30}  {:<8}'.format('Number of parameters: ', params))
#
# print(x.shape)