TADBot / FER /main.py
ryefoxlime's picture
FER alpha 0.1
499f0dc
raw
history blame
19.6 kB
import shutil
import warnings
from sklearn import metrics
from sklearn.metrics import confusion_matrix
from PIL import Image
warnings.filterwarnings("ignore")
import torch.utils.data as data
import os
import argparse
from sklearn.metrics import f1_score, confusion_matrix
from data_preprocessing.sam import SAM
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim
import torch.utils.data
import torch.utils.data.distributed
import matplotlib.pyplot as plt
import torchvision.datasets as datasets
import torchvision.transforms as transforms
import numpy as np
import datetime
from torchsampler import ImbalancedDatasetSampler
from models.PosterV2_7cls import pyramid_trans_expr2
warnings.filterwarnings("ignore", category=UserWarning)
now = datetime.datetime.now()
time_str = now.strftime("[%m-%d]-[%H-%M]-")
if torch.backends.mps.is_available():
device = "mps"
elif torch.cuda.is_available():
device = "cuda"
else:
device = "cpu"
print(f"Using device: {device}")
parser = argparse.ArgumentParser()
parser.add_argument("--data", type=str, default=r"raf-db/DATASET")
parser.add_argument(
"--data_type",
default="RAF-DB",
choices=["RAF-DB", "AffectNet-7", "CAER-S"],
type=str,
help="dataset option",
)
parser.add_argument(
"--checkpoint_path", type=str, default="./checkpoint/" + time_str + "model.pth"
)
parser.add_argument(
"--best_checkpoint_path",
type=str,
default="./checkpoint/" + time_str + "model_best.pth",
)
parser.add_argument(
"-j",
"--workers",
default=4,
type=int,
metavar="N",
help="number of data loading workers",
)
parser.add_argument(
"--epochs", default=200, type=int, metavar="N", help="number of total epochs to run"
)
parser.add_argument(
"--start-epoch",
default=0,
type=int,
metavar="N",
help="manual epoch number (useful on restarts)",
)
parser.add_argument("-b", "--batch-size", default=2, type=int, metavar="N")
parser.add_argument(
"--optimizer", type=str, default="adam", help="Optimizer, adam or sgd."
)
parser.add_argument(
"--lr", "--learning-rate", default=0.000035, type=float, metavar="LR", dest="lr"
)
parser.add_argument("--momentum", default=0.9, type=float, metavar="M")
parser.add_argument(
"--wd", "--weight-decay", default=1e-4, type=float, metavar="W", dest="weight_decay"
)
parser.add_argument(
"-p", "--print-freq", default=30, type=int, metavar="N", help="print frequency"
)
parser.add_argument(
"--resume", default=None, type=str, metavar="PATH", help="path to checkpoint"
)
parser.add_argument(
"-e", "--evaluate", default=None, type=str, help="evaluate model on test set"
)
parser.add_argument("--beta", type=float, default=0.6)
parser.add_argument("--gpu", type=str, default="0")
parser.add_argument(
"-i", "--image", type=str, help="upload a single image to test the prediction"
)
parser.add_argument("-t", "--test", type=str, help="test model on single image")
args = parser.parse_args()
def main():
# os.environ["CUDA_VISIBLE_DEVICES"] = device
best_acc = 0
# print("Training time: " + now.strftime("%m-%d %H:%M"))
# create model
model = pyramid_trans_expr2(img_size=224, num_classes=7)
model = torch.nn.DataParallel(model)
model = model.to(device)
criterion = torch.nn.CrossEntropyLoss()
if args.optimizer == "adamw":
base_optimizer = torch.optim.AdamW
elif args.optimizer == "adam":
base_optimizer = torch.optim.Adam
elif args.optimizer == "sgd":
base_optimizer = torch.optim.SGD
else:
raise ValueError("Optimizer not supported.")
optimizer = SAM(
model.parameters(),
base_optimizer,
lr=args.lr,
rho=0.05,
adaptive=False,
)
scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma=0.98)
recorder = RecorderMeter(args.epochs)
recorder1 = RecorderMeter1(args.epochs)
if args.resume:
if os.path.isfile(args.resume):
print("=> loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume)
args.start_epoch = checkpoint["epoch"]
best_acc = checkpoint["best_acc"]
recorder = checkpoint["recorder"]
recorder1 = checkpoint["recorder1"]
best_acc = best_acc.to()
model.load_state_dict(checkpoint["state_dict"])
optimizer.load_state_dict(checkpoint["optimizer"])
print(
"=> loaded checkpoint '{}' (epoch {})".format(
args.resume, checkpoint["epoch"]
)
)
else:
print("=> no checkpoint found at '{}'".format(args.resume))
cudnn.benchmark = True
# Data loading code
traindir = os.path.join(args.data, "train")
valdir = os.path.join(args.data, "test")
if args.evaluate is None:
if args.data_type == "RAF-DB":
train_dataset = datasets.ImageFolder(
traindir,
transforms.Compose(
[
transforms.Resize((224, 224)),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
),
transforms.RandomErasing(scale=(0.02, 0.1)),
]
),
)
else:
train_dataset = datasets.ImageFolder(
traindir,
transforms.Compose(
[
transforms.Resize((224, 224)),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
),
transforms.RandomErasing(p=1, scale=(0.05, 0.05)),
]
),
)
if args.data_type == "AffectNet-7":
train_loader = torch.utils.data.DataLoader(
train_dataset,
sampler=ImbalancedDatasetSampler(train_dataset),
batch_size=args.batch_size,
shuffle=False,
num_workers=args.workers,
pin_memory=True,
)
else:
train_loader = torch.utils.data.DataLoader(
train_dataset,
batch_size=args.batch_size,
shuffle=True,
num_workers=args.workers,
pin_memory=True,
)
test_dataset = datasets.ImageFolder(
valdir,
transforms.Compose(
[
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
),
]
),
)
val_loader = torch.utils.data.DataLoader(
test_dataset,
batch_size=args.batch_size,
shuffle=False,
num_workers=args.workers,
pin_memory=True,
)
if args.evaluate is not None:
from validation import validate
if os.path.isfile(args.evaluate):
print("=> loading checkpoint '{}'".format(args.evaluate))
checkpoint = torch.load(args.evaluate, map_location=device)
best_acc = checkpoint["best_acc"]
best_acc = best_acc.to()
print(f"best_acc:{best_acc}")
model.load_state_dict(checkpoint["state_dict"])
print(
"=> loaded checkpoint '{}' (epoch {})".format(
args.evaluate, checkpoint["epoch"]
)
)
else:
print("=> no checkpoint found at '{}'".format(args.evaluate))
validate(val_loader, model, criterion, args)
return
if args.test is not None:
from prediction import predict
if os.path.isfile(args.test):
print("=> loading checkpoint '{}'".format(args.test))
checkpoint = torch.load(args.test, map_location=device)
best_acc = checkpoint["best_acc"]
best_acc = best_acc.to()
print(f"best_acc:{best_acc}")
model.load_state_dict(checkpoint["state_dict"])
print(
"=> loaded checkpoint '{}' (epoch {})".format(
args.test, checkpoint["epoch"]
)
)
else:
print("=> no checkpoint found at '{}'".format(args.test))
predict(model, image_path=args.image)
return
matrix = None
for epoch in range(args.start_epoch, args.epochs):
current_learning_rate = optimizer.state_dict()["param_groups"][0]["lr"]
print("Current learning rate: ", current_learning_rate)
txt_name = "./log/" + time_str + "log.txt"
with open(txt_name, "a") as f:
f.write("Current learning rate: " + str(current_learning_rate) + "\n")
# train for one epoch
train_acc, train_los = train(
train_loader, model, criterion, optimizer, epoch, args
)
# evaluate on validation set
val_acc, val_los, output, target, D = validate(
val_loader, model, criterion, args
)
scheduler.step()
recorder.update(epoch, train_los, train_acc, val_los, val_acc)
recorder1.update(output, target)
curve_name = time_str + "cnn.png"
recorder.plot_curve(os.path.join("./log/", curve_name))
# remember best acc and save checkpoint
is_best = val_acc > best_acc
best_acc = max(val_acc, best_acc)
print("Current best accuracy: ", best_acc.item())
if is_best:
matrix = D
print("Current best matrix: ", matrix)
txt_name = "./log/" + time_str + "log.txt"
with open(txt_name, "a") as f:
f.write("Current best accuracy: " + str(best_acc.item()) + "\n")
save_checkpoint(
{
"epoch": epoch + 1,
"state_dict": model.state_dict(),
"best_acc": best_acc,
"optimizer": optimizer.state_dict(),
"recorder1": recorder1,
"recorder": recorder,
},
is_best,
args,
)
def train(train_loader, model, criterion, optimizer, epoch, args):
losses = AverageMeter("Loss", ":.4f")
top1 = AverageMeter("Accuracy", ":6.3f")
progress = ProgressMeter(
len(train_loader), [losses, top1], prefix="Epoch: [{}]".format(epoch)
)
# switch to train mode
model.train()
for i, (images, target) in enumerate(train_loader):
images = images.to(device)
target = target.to(device)
# compute output
output = model(images)
loss = criterion(output, target)
# measure accuracy and record loss
acc1, _ = accuracy(output, target, topk=(1, 5))
losses.update(loss.item(), images.size(0))
top1.update(acc1[0], images.size(0))
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
# optimizer.step()
optimizer.first_step(zero_grad=True)
images = images.to(device)
target = target.to(device)
# compute output
output = model(images)
loss = criterion(output, target)
# measure accuracy and record loss
acc1, _ = accuracy(output, target, topk=(1, 5))
losses.update(loss.item(), images.size(0))
top1.update(acc1[0], images.size(0))
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.second_step(zero_grad=True)
# print loss and accuracy
if i % args.print_freq == 0:
progress.display(i)
return top1.avg, losses.avg
def save_checkpoint(state, is_best, args):
torch.save(state, args.checkpoint_path)
if is_best:
best_state = state.pop("optimizer")
torch.save(best_state, args.best_checkpoint_path)
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self, name, fmt=":f"):
self.name = name
self.fmt = fmt
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def __str__(self):
fmtstr = "{name} {val" + self.fmt + "} ({avg" + self.fmt + "})"
return fmtstr.format(**self.__dict__)
class ProgressMeter(object):
def __init__(self, num_batches, meters, prefix=""):
self.batch_fmtstr = self._get_batch_fmtstr(num_batches)
self.meters = meters
self.prefix = prefix
def display(self, batch):
entries = [self.prefix + self.batch_fmtstr.format(batch)]
entries += [str(meter) for meter in self.meters]
print_txt = "\t".join(entries)
print(print_txt)
txt_name = "./log/" + time_str + "log.txt"
with open(txt_name, "a") as f:
f.write(print_txt + "\n")
def _get_batch_fmtstr(self, num_batches):
num_digits = len(str(num_batches // 1))
fmt = "{:" + str(num_digits) + "d}"
return "[" + fmt + "/" + fmt.format(num_batches) + "]"
def accuracy(output, target, topk=(1,)):
"""Computes the accuracy over the k top predictions for the specified values of k"""
with torch.no_grad():
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].contiguous().view(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res
labels = ["A", "B", "C", "F", "G", "H", "I", "J", "K", "L", "M", "N", "O"]
class RecorderMeter1(object):
"""Computes and stores the minimum loss value and its epoch index"""
def __init__(self, total_epoch):
self.reset(total_epoch)
def reset(self, total_epoch):
self.total_epoch = total_epoch
self.current_epoch = 0
self.epoch_losses = np.zeros(
(self.total_epoch, 2), dtype=np.float32
) # [epoch, train/val]
self.epoch_accuracy = np.zeros(
(self.total_epoch, 2), dtype=np.float32
) # [epoch, train/val]
def update(self, output, target):
self.y_pred = output
self.y_true = target
def plot_confusion_matrix(self, cm, title="Confusion Matrix", cmap=plt.cm.binary):
plt.imshow(cm, interpolation="nearest", cmap=cmap)
y_true = self.y_true
y_pred = self.y_pred
plt.title(title)
plt.colorbar()
xlocations = np.array(range(len(labels)))
plt.xticks(xlocations, labels, rotation=90)
plt.yticks(xlocations, labels)
plt.ylabel("True label")
plt.xlabel("Predicted label")
cm = confusion_matrix(y_true, y_pred)
np.set_printoptions(precision=2)
cm_normalized = cm.astype("float") / cm.sum(axis=1)[:, np.newaxis]
plt.figure(figsize=(12, 8), dpi=120)
ind_array = np.arange(len(labels))
x, y = np.meshgrid(ind_array, ind_array)
for x_val, y_val in zip(x.flatten(), y.flatten()):
c = cm_normalized[y_val][x_val]
if c > 0.01:
plt.text(
x_val,
y_val,
"%0.2f" % (c,),
color="red",
fontsize=7,
va="center",
ha="center",
)
# offset the tick
tick_marks = np.arange(len(7))
plt.gca().set_xticks(tick_marks, minor=True)
plt.gca().set_yticks(tick_marks, minor=True)
plt.gca().xaxis.set_ticks_position("none")
plt.gca().yaxis.set_ticks_position("none")
plt.grid(True, which="minor", linestyle="-")
plt.gcf().subplots_adjust(bottom=0.15)
plot_confusion_matrix(cm_normalized, title="Normalized confusion matrix")
# show confusion matrix
plt.savefig("./log/confusion_matrix.png", format="png")
# fig.savefig(save_path, dpi=dpi, bbox_inches='tight')
print("Saved figure")
plt.show()
def matrix(self):
target = self.y_true
output = self.y_pred
im_re_label = np.array(target)
im_pre_label = np.array(output)
y_ture = im_re_label.flatten()
# im_re_label.transpose()
y_pred = im_pre_label.flatten()
im_pre_label.transpose()
class RecorderMeter(object):
"""Computes and stores the minimum loss value and its epoch index"""
def __init__(self, total_epoch):
self.reset(total_epoch)
def reset(self, total_epoch):
self.total_epoch = total_epoch
self.current_epoch = 0
self.epoch_losses = np.zeros(
(self.total_epoch, 2), dtype=np.float32
) # [epoch, train/val]
self.epoch_accuracy = np.zeros(
(self.total_epoch, 2), dtype=np.float32
) # [epoch, train/val]
def update(self, idx, train_loss, train_acc, val_loss, val_acc):
self.epoch_losses[idx, 0] = train_loss * 30
self.epoch_losses[idx, 1] = val_loss * 30
self.epoch_accuracy[idx, 0] = train_acc
self.epoch_accuracy[idx, 1] = val_acc
self.current_epoch = idx + 1
def plot_curve(self, save_path):
title = "the accuracy/loss curve of train/val"
dpi = 80
width, height = 1800, 800
legend_fontsize = 10
figsize = width / float(dpi), height / float(dpi)
fig = plt.figure(figsize=figsize)
x_axis = np.array([i for i in range(self.total_epoch)]) # epochs
y_axis = np.zeros(self.total_epoch)
plt.xlim(0, self.total_epoch)
plt.ylim(0, 100)
interval_y = 5
interval_x = 5
plt.xticks(np.arange(0, self.total_epoch + interval_x, interval_x))
plt.yticks(np.arange(0, 100 + interval_y, interval_y))
plt.grid()
plt.title(title, fontsize=20)
plt.xlabel("the training epoch", fontsize=16)
plt.ylabel("accuracy", fontsize=16)
y_axis[:] = self.epoch_accuracy[:, 0]
plt.plot(x_axis, y_axis, color="g", linestyle="-", label="train-accuracy", lw=2)
plt.legend(loc=4, fontsize=legend_fontsize)
y_axis[:] = self.epoch_accuracy[:, 1]
plt.plot(x_axis, y_axis, color="y", linestyle="-", label="valid-accuracy", lw=2)
plt.legend(loc=4, fontsize=legend_fontsize)
y_axis[:] = self.epoch_losses[:, 0]
plt.plot(x_axis, y_axis, color="g", linestyle=":", label="train-loss-x30", lw=2)
plt.legend(loc=4, fontsize=legend_fontsize)
y_axis[:] = self.epoch_losses[:, 1]
plt.plot(x_axis, y_axis, color="y", linestyle=":", label="valid-loss-x30", lw=2)
plt.legend(loc=4, fontsize=legend_fontsize)
if save_path is not None:
fig.savefig(save_path, dpi=dpi, bbox_inches="tight")
print("Saved figure")
plt.close(fig)
if __name__ == "__main__":
main()