ryefoxlime TheDunkinNinja commited on
Commit
2dd581a
1 Parent(s): 8143c42

Upload TAD.py (#1)

Browse files

- Upload TAD.py (2ebbddda40372666ed324a9dbb374b84d6ec87f7)


Co-authored-by: Tharrun S <[email protected]>

Files changed (1) hide show
  1. TAD.py +124 -0
TAD.py ADDED
@@ -0,0 +1,124 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import ollama
2
+ import chromadb
3
+ import speech_recognition as sr
4
+ import requests
5
+ import pyttsx3
6
+
7
+
8
+ client = chromadb.Client()
9
+
10
+ message_history = [
11
+
12
+ {
13
+ 'id' : 1,
14
+ 'prompt' : 'What is your name?',
15
+ 'response' : 'My name is TADBot, a bot to help with short term remedial help for mental purposes. '
16
+
17
+ },
18
+
19
+ {
20
+ 'id' : 2,
21
+ 'prompt' : 'Bye',
22
+ 'response' : 'Good to see you get better. Hopefully you reach out to me if you have any problems.'
23
+
24
+ },
25
+
26
+ {
27
+ 'id' : 3,
28
+ 'prompt' : 'What is the essence of Life?',
29
+ 'response' : 'The essence of life is to create what you want of yourself.'
30
+
31
+ }
32
+ ]
33
+ convo = []
34
+
35
+ modelname = "ms"
36
+
37
+
38
+ def create_vector_db(conversations):
39
+
40
+ vector_db_name = 'conversations'
41
+
42
+ try:
43
+ client.delete_collection(vector_db_name)
44
+ except ValueError as e:
45
+ pass
46
+
47
+ vector_db = client.create_collection(name=vector_db_name)
48
+ for c in conversations:
49
+
50
+ serialized_convo = 'prompt: ' + c["prompt"] + ' response: ' + c["response"]
51
+
52
+ response = ollama.embeddings(model = "nomic-embed-text",prompt = serialized_convo)
53
+ embedding = response["embedding"]
54
+
55
+ vector_db.add(ids = [str(c['id'])], embeddings = [embedding], documents = [serialized_convo])
56
+
57
+
58
+ def stream_response(prompt):
59
+
60
+ convo.append({'role': "user", 'content': prompt})
61
+ output = ollama.chat(model = modelname, messages = convo)
62
+ response = output['message']['content']
63
+
64
+ print("TADBot: ")
65
+ print(response)
66
+ engine = pyttsx3.init()
67
+ engine.say(response)
68
+ engine.runAndWait()
69
+
70
+ convo.append({'role': "assistant", 'content': response})
71
+
72
+ def retrieve_embeddings(prompt):
73
+ response = ollama.embeddings(model = "nomic-embed-text", prompt = prompt)
74
+ propmt_embedding = response['embedding']
75
+
76
+ vector_db = client.get_collection(name = 'conversations')
77
+ results = vector_db.query(query_embeddings=[propmt_embedding], n_results = 1)
78
+
79
+ best_embedding = results['documents'][0][0]
80
+ return best_embedding
81
+
82
+ create_vector_db(message_history)
83
+
84
+
85
+ while True:
86
+
87
+ r = sr.Recognizer()
88
+ m = sr.Microphone()
89
+
90
+ try:
91
+
92
+
93
+ print("Say something!")
94
+ with m as source:
95
+ audio = r.listen(source)
96
+
97
+
98
+ try:
99
+ # for testing purposes, we're just using the default API key
100
+ # to use another API key, use `r.recognize_google(audio, key="GOOGLE_SPEECH_RECOGNITION_API_KEY")`
101
+ # instead of `r.recognize_google(audio)`
102
+ prompt = r.recognize_google(audio)
103
+ print("Tadbot thinks you said: " + prompt)
104
+ except sr.UnknownValueError:
105
+ print("Tadbot could not understand audio")
106
+ except sr.RequestError as e:
107
+ print("Could not request results from Google Speech Recognition service; {0}".format(e))
108
+
109
+
110
+ print("Please wait...")
111
+ with m as source:
112
+ r.adjust_for_ambient_noise(source)
113
+
114
+ if prompt == "bye" or prompt == "Bye":
115
+ print("TADBot: Hopefully I was able to help you out today. Have a Nice Day!")
116
+ break
117
+ """
118
+ context = retrieve_embeddings(prompt)
119
+
120
+ prompt = prompt + "CONTEXT FROM EMBEDDING: " + context
121
+ """
122
+ stream_response(prompt)
123
+ except KeyboardInterrupt:
124
+ pass