ryefoxlime
commited on
Commit
•
3301578
1
Parent(s):
b37902d
Fine Tuned v0.0.1
Browse files- .gitignore +5 -3
- Gemma2_2B/finetune.ipynb +514 -0
- Gemma2_2B/finetune.py +0 -0
- Gemma2_2B/hyperparams.yaml +34 -0
- Gemma2_2B/inference.ipynb +303 -0
- Gemma2_2B/inference.py +0 -0
- pyproject.toml +1 -0
- uv.lock +2 -0
.gitignore
CHANGED
@@ -3,6 +3,8 @@
|
|
3 |
FER/Images/
|
4 |
TADBot.code-workspace
|
5 |
FER/models/checkpoints
|
6 |
-
|
7 |
-
|
8 |
-
|
|
|
|
|
|
3 |
FER/Images/
|
4 |
TADBot.code-workspace
|
5 |
FER/models/checkpoints
|
6 |
+
FER/__pycache__
|
7 |
+
FER/models/__pycache__
|
8 |
+
Gemma2_2B/.cache
|
9 |
+
Gemma2_2B/__pycache__
|
10 |
+
Gemma2_2B/results
|
Gemma2_2B/finetune.ipynb
ADDED
@@ -0,0 +1,514 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"from huggingface_hub import login\n",
|
10 |
+
"from dotenv import load_dotenv\n",
|
11 |
+
"import os\n",
|
12 |
+
"load_dotenv()\n",
|
13 |
+
"\n",
|
14 |
+
"# Login to Hugging Face Hub\n",
|
15 |
+
"login(token=os.getenv(\"HUGGINGFACE_TOKEN\"))"
|
16 |
+
]
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"cell_type": "code",
|
20 |
+
"execution_count": 10,
|
21 |
+
"metadata": {},
|
22 |
+
"outputs": [
|
23 |
+
{
|
24 |
+
"data": {
|
25 |
+
"application/vnd.jupyter.widget-view+json": {
|
26 |
+
"model_id": "a39e6120cbea4462999cfa5f887a8015",
|
27 |
+
"version_major": 2,
|
28 |
+
"version_minor": 0
|
29 |
+
},
|
30 |
+
"text/plain": [
|
31 |
+
"README.md: 0%| | 0.00/288 [00:00<?, ?B/s]"
|
32 |
+
]
|
33 |
+
},
|
34 |
+
"metadata": {},
|
35 |
+
"output_type": "display_data"
|
36 |
+
},
|
37 |
+
{
|
38 |
+
"name": "stderr",
|
39 |
+
"output_type": "stream",
|
40 |
+
"text": [
|
41 |
+
"f:\\TADBot\\.venv\\Lib\\site-packages\\huggingface_hub\\file_download.py:139: UserWarning: `huggingface_hub` cache-system uses symlinks by default to efficiently store duplicated files but your machine does not support them in C:\\Users\\Nitin Kausik Remella\\.cache\\huggingface\\hub\\datasets--ai-bites--databricks-mini. Caching files will still work but in a degraded version that might require more space on your disk. This warning can be disabled by setting the `HF_HUB_DISABLE_SYMLINKS_WARNING` environment variable. For more details, see https://huggingface.co/docs/huggingface_hub/how-to-cache#limitations.\n",
|
42 |
+
"To support symlinks on Windows, you either need to activate Developer Mode or to run Python as an administrator. In order to activate developer mode, see this article: https://docs.microsoft.com/en-us/windows/apps/get-started/enable-your-device-for-development\n",
|
43 |
+
" warnings.warn(message)\n"
|
44 |
+
]
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"data": {
|
48 |
+
"application/vnd.jupyter.widget-view+json": {
|
49 |
+
"model_id": "de15e48751c34c36b5d02c2449380d06",
|
50 |
+
"version_major": 2,
|
51 |
+
"version_minor": 0
|
52 |
+
},
|
53 |
+
"text/plain": [
|
54 |
+
"dolly-mini-train.jsonl: 0%| | 0.00/5.24M [00:00<?, ?B/s]"
|
55 |
+
]
|
56 |
+
},
|
57 |
+
"metadata": {},
|
58 |
+
"output_type": "display_data"
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"data": {
|
62 |
+
"application/vnd.jupyter.widget-view+json": {
|
63 |
+
"model_id": "d4094fd4af084a77a5bc3904b5db4197",
|
64 |
+
"version_major": 2,
|
65 |
+
"version_minor": 0
|
66 |
+
},
|
67 |
+
"text/plain": [
|
68 |
+
"Generating train split: 0%| | 0/10544 [00:00<?, ? examples/s]"
|
69 |
+
]
|
70 |
+
},
|
71 |
+
"metadata": {},
|
72 |
+
"output_type": "display_data"
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"data": {
|
76 |
+
"text/plain": [
|
77 |
+
"Dataset({\n",
|
78 |
+
" features: ['text'],\n",
|
79 |
+
" num_rows: 1000\n",
|
80 |
+
"})"
|
81 |
+
]
|
82 |
+
},
|
83 |
+
"execution_count": 10,
|
84 |
+
"metadata": {},
|
85 |
+
"output_type": "execute_result"
|
86 |
+
}
|
87 |
+
],
|
88 |
+
"source": [
|
89 |
+
"from datasets import load_dataset\n",
|
90 |
+
"dataset_name = \"ai-bites/databricks-mini\"\n",
|
91 |
+
"dataset = load_dataset(dataset_name, split=\"train[0:1000]\", cache_dir=\".cache/\")\n",
|
92 |
+
"\n",
|
93 |
+
"dataset"
|
94 |
+
]
|
95 |
+
},
|
96 |
+
{
|
97 |
+
"cell_type": "code",
|
98 |
+
"execution_count": 11,
|
99 |
+
"metadata": {},
|
100 |
+
"outputs": [],
|
101 |
+
"source": [
|
102 |
+
"import torch\n",
|
103 |
+
"from transformers import (\n",
|
104 |
+
" AutoModelForCausalLM,\n",
|
105 |
+
" AutoTokenizer,\n",
|
106 |
+
" BitsAndBytesConfig,\n",
|
107 |
+
" HfArgumentParser,\n",
|
108 |
+
" TrainingArguments,\n",
|
109 |
+
" logging,\n",
|
110 |
+
")\n",
|
111 |
+
"from peft import LoraConfig, PeftModel\n",
|
112 |
+
"from trl import SFTTrainer"
|
113 |
+
]
|
114 |
+
},
|
115 |
+
{
|
116 |
+
"cell_type": "code",
|
117 |
+
"execution_count": 30,
|
118 |
+
"metadata": {},
|
119 |
+
"outputs": [],
|
120 |
+
"source": [
|
121 |
+
"import yaml\n",
|
122 |
+
"with open(\"hyperparams.yaml\", 'r') as file:\n",
|
123 |
+
" hyperparams = yaml.load(file, Loader=yaml.FullLoader)"
|
124 |
+
]
|
125 |
+
},
|
126 |
+
{
|
127 |
+
"cell_type": "code",
|
128 |
+
"execution_count": 31,
|
129 |
+
"metadata": {},
|
130 |
+
"outputs": [],
|
131 |
+
"source": [
|
132 |
+
"compute_dtype = getattr(torch, hyperparams['bnb_4bit_compute_dtype'])\n",
|
133 |
+
"\n",
|
134 |
+
"bnb_config = BitsAndBytesConfig(\n",
|
135 |
+
" load_in_4bit=hyperparams['use_4bit'], # Activates 4-bit precision loading\n",
|
136 |
+
" bnb_4bit_quant_type=hyperparams['bnb_4bit_quant_type'], # nf4\n",
|
137 |
+
" bnb_4bit_compute_dtype=compute_dtype, # float16\n",
|
138 |
+
" bnb_4bit_use_double_quant=hyperparams['use_nested_quant'], # False\n",
|
139 |
+
")"
|
140 |
+
]
|
141 |
+
},
|
142 |
+
{
|
143 |
+
"cell_type": "code",
|
144 |
+
"execution_count": 32,
|
145 |
+
"metadata": {},
|
146 |
+
"outputs": [
|
147 |
+
{
|
148 |
+
"name": "stdout",
|
149 |
+
"output_type": "stream",
|
150 |
+
"text": [
|
151 |
+
"Setting BF16 to True\n"
|
152 |
+
]
|
153 |
+
}
|
154 |
+
],
|
155 |
+
"source": [
|
156 |
+
"# Check GPU compatibility with bfloat16\n",
|
157 |
+
"if compute_dtype == torch.float16 and hyperparams['use_4bit']:\n",
|
158 |
+
" major, _ = torch.cuda.get_device_capability()\n",
|
159 |
+
" if major >= 8:\n",
|
160 |
+
" print(\"Setting BF16 to True\")\n",
|
161 |
+
" hyperparams['bf16'] = True\n",
|
162 |
+
" else:\n",
|
163 |
+
" hyperparams['bf16'] = False"
|
164 |
+
]
|
165 |
+
},
|
166 |
+
{
|
167 |
+
"cell_type": "code",
|
168 |
+
"execution_count": 33,
|
169 |
+
"metadata": {},
|
170 |
+
"outputs": [
|
171 |
+
{
|
172 |
+
"data": {
|
173 |
+
"application/vnd.jupyter.widget-view+json": {
|
174 |
+
"model_id": "9ab84ef6c43249de9726940a78f2717f",
|
175 |
+
"version_major": 2,
|
176 |
+
"version_minor": 0
|
177 |
+
},
|
178 |
+
"text/plain": [
|
179 |
+
"Loading checkpoint shards: 0%| | 0/2 [00:00<?, ?it/s]"
|
180 |
+
]
|
181 |
+
},
|
182 |
+
"metadata": {},
|
183 |
+
"output_type": "display_data"
|
184 |
+
}
|
185 |
+
],
|
186 |
+
"source": [
|
187 |
+
"model = AutoModelForCausalLM.from_pretrained(\n",
|
188 |
+
" hyperparams['model_name'],\n",
|
189 |
+
" token=os.getenv(\"HUGGINGFACE_TOKEN\"),\n",
|
190 |
+
" quantization_config=bnb_config,\n",
|
191 |
+
" device_map=hyperparams['device_map'],\n",
|
192 |
+
" cache_dir=\".cache/\",\n",
|
193 |
+
")\n",
|
194 |
+
"model.config.use_cache = False\n",
|
195 |
+
"model.config.pretraining_tp = 1\n",
|
196 |
+
"\n",
|
197 |
+
"tokenizer = AutoTokenizer.from_pretrained(hyperparams['model_name'], token=os.getenv(\"HUGGINGFACE_TOKEN\"), trust_remote_code=True, cache_dir=\".cache/\")\n",
|
198 |
+
"tokenizer.pad_token = tokenizer.eos_token\n",
|
199 |
+
"tokenizer.padding_side = \"right\" # Fix weird overflow issue with fp16 training"
|
200 |
+
]
|
201 |
+
},
|
202 |
+
{
|
203 |
+
"cell_type": "code",
|
204 |
+
"execution_count": 34,
|
205 |
+
"metadata": {},
|
206 |
+
"outputs": [],
|
207 |
+
"source": [
|
208 |
+
"# Load LoRA configuration\n",
|
209 |
+
"peft_config = LoraConfig(\n",
|
210 |
+
" lora_alpha=hyperparams['lora_alpha'],\n",
|
211 |
+
" lora_dropout=hyperparams['lora_dropout'],\n",
|
212 |
+
" r=hyperparams['lora_r'],\n",
|
213 |
+
" bias=\"none\",\n",
|
214 |
+
" task_type=\"CAUSAL_LM\",\n",
|
215 |
+
" target_modules=[\"q_proj\", \"k_proj\", \"v_proj\", \"o_proj\",\"gate_proj\", \"up_proj\"]\n",
|
216 |
+
")"
|
217 |
+
]
|
218 |
+
},
|
219 |
+
{
|
220 |
+
"cell_type": "code",
|
221 |
+
"execution_count": 39,
|
222 |
+
"metadata": {},
|
223 |
+
"outputs": [
|
224 |
+
{
|
225 |
+
"data": {
|
226 |
+
"text/plain": [
|
227 |
+
"TrainingArguments(\n",
|
228 |
+
"_n_gpu=1,\n",
|
229 |
+
"accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False},\n",
|
230 |
+
"adafactor=False,\n",
|
231 |
+
"adam_beta1=0.9,\n",
|
232 |
+
"adam_beta2=0.999,\n",
|
233 |
+
"adam_epsilon=1e-08,\n",
|
234 |
+
"auto_find_batch_size=False,\n",
|
235 |
+
"average_tokens_across_devices=False,\n",
|
236 |
+
"batch_eval_metrics=False,\n",
|
237 |
+
"bf16=True,\n",
|
238 |
+
"bf16_full_eval=False,\n",
|
239 |
+
"data_seed=None,\n",
|
240 |
+
"dataloader_drop_last=False,\n",
|
241 |
+
"dataloader_num_workers=0,\n",
|
242 |
+
"dataloader_persistent_workers=False,\n",
|
243 |
+
"dataloader_pin_memory=True,\n",
|
244 |
+
"dataloader_prefetch_factor=None,\n",
|
245 |
+
"ddp_backend=None,\n",
|
246 |
+
"ddp_broadcast_buffers=None,\n",
|
247 |
+
"ddp_bucket_cap_mb=None,\n",
|
248 |
+
"ddp_find_unused_parameters=None,\n",
|
249 |
+
"ddp_timeout=1800,\n",
|
250 |
+
"debug=[],\n",
|
251 |
+
"deepspeed=None,\n",
|
252 |
+
"disable_tqdm=False,\n",
|
253 |
+
"dispatch_batches=None,\n",
|
254 |
+
"do_eval=False,\n",
|
255 |
+
"do_predict=False,\n",
|
256 |
+
"do_train=False,\n",
|
257 |
+
"eval_accumulation_steps=None,\n",
|
258 |
+
"eval_delay=0,\n",
|
259 |
+
"eval_do_concat_batches=True,\n",
|
260 |
+
"eval_on_start=False,\n",
|
261 |
+
"eval_steps=None,\n",
|
262 |
+
"eval_strategy=IntervalStrategy.NO,\n",
|
263 |
+
"eval_use_gather_object=False,\n",
|
264 |
+
"evaluation_strategy=None,\n",
|
265 |
+
"fp16=False,\n",
|
266 |
+
"fp16_backend=auto,\n",
|
267 |
+
"fp16_full_eval=False,\n",
|
268 |
+
"fp16_opt_level=O1,\n",
|
269 |
+
"fsdp=[],\n",
|
270 |
+
"fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False},\n",
|
271 |
+
"fsdp_min_num_params=0,\n",
|
272 |
+
"fsdp_transformer_layer_cls_to_wrap=None,\n",
|
273 |
+
"full_determinism=False,\n",
|
274 |
+
"gradient_accumulation_steps=1,\n",
|
275 |
+
"gradient_checkpointing=False,\n",
|
276 |
+
"gradient_checkpointing_kwargs=None,\n",
|
277 |
+
"greater_is_better=None,\n",
|
278 |
+
"group_by_length=True,\n",
|
279 |
+
"half_precision_backend=auto,\n",
|
280 |
+
"hub_always_push=False,\n",
|
281 |
+
"hub_model_id=None,\n",
|
282 |
+
"hub_private_repo=False,\n",
|
283 |
+
"hub_strategy=HubStrategy.EVERY_SAVE,\n",
|
284 |
+
"hub_token=<HUB_TOKEN>,\n",
|
285 |
+
"ignore_data_skip=False,\n",
|
286 |
+
"include_for_metrics=[],\n",
|
287 |
+
"include_inputs_for_metrics=False,\n",
|
288 |
+
"include_num_input_tokens_seen=False,\n",
|
289 |
+
"include_tokens_per_second=False,\n",
|
290 |
+
"jit_mode_eval=False,\n",
|
291 |
+
"label_names=None,\n",
|
292 |
+
"label_smoothing_factor=0.0,\n",
|
293 |
+
"learning_rate=0.0002,\n",
|
294 |
+
"length_column_name=length,\n",
|
295 |
+
"load_best_model_at_end=False,\n",
|
296 |
+
"local_rank=0,\n",
|
297 |
+
"log_level=passive,\n",
|
298 |
+
"log_level_replica=warning,\n",
|
299 |
+
"log_on_each_node=True,\n",
|
300 |
+
"logging_dir=./results\\runs\\Nov15_13-14-10_FutureGadgetLab,\n",
|
301 |
+
"logging_first_step=False,\n",
|
302 |
+
"logging_nan_inf_filter=True,\n",
|
303 |
+
"logging_steps=25,\n",
|
304 |
+
"logging_strategy=IntervalStrategy.STEPS,\n",
|
305 |
+
"lr_scheduler_kwargs={},\n",
|
306 |
+
"lr_scheduler_type=SchedulerType.CONSTANT,\n",
|
307 |
+
"max_grad_norm=0.3,\n",
|
308 |
+
"max_steps=-1,\n",
|
309 |
+
"metric_for_best_model=None,\n",
|
310 |
+
"mp_parameters=,\n",
|
311 |
+
"neftune_noise_alpha=None,\n",
|
312 |
+
"no_cuda=False,\n",
|
313 |
+
"num_train_epochs=1,\n",
|
314 |
+
"optim=OptimizerNames.PAGED_ADAMW,\n",
|
315 |
+
"optim_args=None,\n",
|
316 |
+
"optim_target_modules=None,\n",
|
317 |
+
"output_dir=./results,\n",
|
318 |
+
"overwrite_output_dir=False,\n",
|
319 |
+
"past_index=-1,\n",
|
320 |
+
"per_device_eval_batch_size=8,\n",
|
321 |
+
"per_device_train_batch_size=2,\n",
|
322 |
+
"prediction_loss_only=False,\n",
|
323 |
+
"push_to_hub=False,\n",
|
324 |
+
"push_to_hub_model_id=None,\n",
|
325 |
+
"push_to_hub_organization=None,\n",
|
326 |
+
"push_to_hub_token=<PUSH_TO_HUB_TOKEN>,\n",
|
327 |
+
"ray_scope=last,\n",
|
328 |
+
"remove_unused_columns=True,\n",
|
329 |
+
"report_to=['tensorboard'],\n",
|
330 |
+
"restore_callback_states_from_checkpoint=False,\n",
|
331 |
+
"resume_from_checkpoint=None,\n",
|
332 |
+
"run_name=./results,\n",
|
333 |
+
"save_on_each_node=False,\n",
|
334 |
+
"save_only_model=False,\n",
|
335 |
+
"save_safetensors=True,\n",
|
336 |
+
"save_steps=25,\n",
|
337 |
+
"save_strategy=IntervalStrategy.STEPS,\n",
|
338 |
+
"save_total_limit=None,\n",
|
339 |
+
"seed=42,\n",
|
340 |
+
"skip_memory_metrics=True,\n",
|
341 |
+
"split_batches=None,\n",
|
342 |
+
"tf32=None,\n",
|
343 |
+
"torch_compile=False,\n",
|
344 |
+
"torch_compile_backend=None,\n",
|
345 |
+
"torch_compile_mode=None,\n",
|
346 |
+
"torch_empty_cache_steps=None,\n",
|
347 |
+
"torchdynamo=None,\n",
|
348 |
+
"tpu_metrics_debug=False,\n",
|
349 |
+
"tpu_num_cores=None,\n",
|
350 |
+
"use_cpu=False,\n",
|
351 |
+
"use_ipex=False,\n",
|
352 |
+
"use_legacy_prediction_loop=False,\n",
|
353 |
+
"use_liger_kernel=False,\n",
|
354 |
+
"use_mps_device=False,\n",
|
355 |
+
"warmup_ratio=0.03,\n",
|
356 |
+
"warmup_steps=0,\n",
|
357 |
+
"weight_decay=0.001,\n",
|
358 |
+
")"
|
359 |
+
]
|
360 |
+
},
|
361 |
+
"execution_count": 39,
|
362 |
+
"metadata": {},
|
363 |
+
"output_type": "execute_result"
|
364 |
+
}
|
365 |
+
],
|
366 |
+
"source": [
|
367 |
+
"# Set training parameters\n",
|
368 |
+
"training_arguments = TrainingArguments(\n",
|
369 |
+
" output_dir=hyperparams['output_dir'],\n",
|
370 |
+
" num_train_epochs=hyperparams['num_train_epochs'],\n",
|
371 |
+
" per_device_train_batch_size=hyperparams['per_device_train_batch_size'],\n",
|
372 |
+
" gradient_accumulation_steps=hyperparams['gradient_accumulation_steps'],\n",
|
373 |
+
" optim=hyperparams['optimizer'],\n",
|
374 |
+
" save_steps=hyperparams['save_steps'],\n",
|
375 |
+
" logging_steps=hyperparams['logging_steps'],\n",
|
376 |
+
" learning_rate=float(hyperparams['learning_rate']),\n",
|
377 |
+
" weight_decay=hyperparams['weight_decay'],\n",
|
378 |
+
" fp16=hyperparams['fp16'],\n",
|
379 |
+
" bf16=hyperparams['bf16'],\n",
|
380 |
+
" max_grad_norm=hyperparams['max_grad_norm'],\n",
|
381 |
+
" max_steps=hyperparams['max_steps'],\n",
|
382 |
+
" warmup_ratio=hyperparams['warmup_ratio'],\n",
|
383 |
+
" group_by_length=hyperparams['group_by_length'],\n",
|
384 |
+
" lr_scheduler_type=hyperparams['lr_scheduler_type'],\n",
|
385 |
+
" report_to=\"tensorboard\",\n",
|
386 |
+
")\n",
|
387 |
+
"training_arguments"
|
388 |
+
]
|
389 |
+
},
|
390 |
+
{
|
391 |
+
"cell_type": "code",
|
392 |
+
"execution_count": 40,
|
393 |
+
"metadata": {},
|
394 |
+
"outputs": [
|
395 |
+
{
|
396 |
+
"name": "stderr",
|
397 |
+
"output_type": "stream",
|
398 |
+
"text": [
|
399 |
+
"f:\\TADBot\\.venv\\Lib\\site-packages\\huggingface_hub\\utils\\_deprecation.py:100: FutureWarning: Deprecated argument(s) used in '__init__': dataset_text_field, max_seq_length, packing. Will not be supported from version '0.13.0'.\n",
|
400 |
+
"\n",
|
401 |
+
"Deprecated positional argument(s) used in SFTTrainer, please use the SFTConfig to set these arguments instead.\n",
|
402 |
+
" warnings.warn(message, FutureWarning)\n",
|
403 |
+
"f:\\TADBot\\.venv\\Lib\\site-packages\\trl\\trainer\\sft_trainer.py:212: UserWarning: You passed a `packing` argument to the SFTTrainer, the value you passed will override the one in the `SFTConfig`.\n",
|
404 |
+
" warnings.warn(\n",
|
405 |
+
"f:\\TADBot\\.venv\\Lib\\site-packages\\trl\\trainer\\sft_trainer.py:300: UserWarning: You passed a `max_seq_length` argument to the SFTTrainer, the value you passed will override the one in the `SFTConfig`.\n",
|
406 |
+
" warnings.warn(\n",
|
407 |
+
"f:\\TADBot\\.venv\\Lib\\site-packages\\trl\\trainer\\sft_trainer.py:328: UserWarning: You passed a `dataset_text_field` argument to the SFTTrainer, the value you passed will override the one in the `SFTConfig`.\n",
|
408 |
+
" warnings.warn(\n"
|
409 |
+
]
|
410 |
+
}
|
411 |
+
],
|
412 |
+
"source": [
|
413 |
+
"trainer = SFTTrainer(\n",
|
414 |
+
" model=model,\n",
|
415 |
+
" train_dataset=dataset,\n",
|
416 |
+
" peft_config=peft_config,\n",
|
417 |
+
" dataset_text_field=\"text\",\n",
|
418 |
+
" # formatting_func=format_prompts_fn,\n",
|
419 |
+
" max_seq_length=hyperparams['max_seq_length'],\n",
|
420 |
+
" tokenizer=tokenizer,\n",
|
421 |
+
" args=training_arguments,\n",
|
422 |
+
" packing=hyperparams['packing'],\n",
|
423 |
+
")"
|
424 |
+
]
|
425 |
+
},
|
426 |
+
{
|
427 |
+
"cell_type": "code",
|
428 |
+
"execution_count": null,
|
429 |
+
"metadata": {},
|
430 |
+
"outputs": [
|
431 |
+
{
|
432 |
+
"data": {
|
433 |
+
"application/vnd.jupyter.widget-view+json": {
|
434 |
+
"model_id": "0033f5bb31a7416facfd8a3fd3bd5ad1",
|
435 |
+
"version_major": 2,
|
436 |
+
"version_minor": 0
|
437 |
+
},
|
438 |
+
"text/plain": [
|
439 |
+
" 0%| | 0/1340 [00:00<?, ?it/s]"
|
440 |
+
]
|
441 |
+
},
|
442 |
+
"metadata": {},
|
443 |
+
"output_type": "display_data"
|
444 |
+
},
|
445 |
+
{
|
446 |
+
"name": "stdout",
|
447 |
+
"output_type": "stream",
|
448 |
+
"text": [
|
449 |
+
"{'loss': 3.8879, 'grad_norm': 18.030195236206055, 'learning_rate': 0.0002, 'epoch': 0.02}\n",
|
450 |
+
"{'loss': 2.9569, 'grad_norm': 9.667036056518555, 'learning_rate': 0.0002, 'epoch': 0.04}\n",
|
451 |
+
"{'loss': 2.6361, 'grad_norm': 9.089476585388184, 'learning_rate': 0.0002, 'epoch': 0.06}\n",
|
452 |
+
"{'loss': 2.9523, 'grad_norm': 6.053662300109863, 'learning_rate': 0.0002, 'epoch': 0.07}\n",
|
453 |
+
"{'loss': 2.8543, 'grad_norm': 7.764152526855469, 'learning_rate': 0.0002, 'epoch': 0.09}\n",
|
454 |
+
"{'loss': 2.8802, 'grad_norm': 6.539248466491699, 'learning_rate': 0.0002, 'epoch': 0.11}\n",
|
455 |
+
"{'loss': 2.7047, 'grad_norm': 5.485109329223633, 'learning_rate': 0.0002, 'epoch': 0.13}\n",
|
456 |
+
"{'loss': 2.6576, 'grad_norm': 9.22624397277832, 'learning_rate': 0.0002, 'epoch': 0.15}\n",
|
457 |
+
"{'loss': 2.7756, 'grad_norm': 6.477100372314453, 'learning_rate': 0.0002, 'epoch': 0.17}\n",
|
458 |
+
"{'loss': 2.7012, 'grad_norm': 5.891603946685791, 'learning_rate': 0.0002, 'epoch': 0.19}\n",
|
459 |
+
"{'loss': 2.5026, 'grad_norm': 5.75968599319458, 'learning_rate': 0.0002, 'epoch': 0.21}\n",
|
460 |
+
"{'loss': 2.8085, 'grad_norm': 7.938610076904297, 'learning_rate': 0.0002, 'epoch': 0.22}\n",
|
461 |
+
"{'loss': 2.5286, 'grad_norm': 5.600504398345947, 'learning_rate': 0.0002, 'epoch': 0.24}\n",
|
462 |
+
"{'loss': 2.5495, 'grad_norm': 6.746212005615234, 'learning_rate': 0.0002, 'epoch': 0.26}\n",
|
463 |
+
"{'loss': 2.7405, 'grad_norm': 3.8923749923706055, 'learning_rate': 0.0002, 'epoch': 0.28}\n",
|
464 |
+
"{'loss': 2.5657, 'grad_norm': 5.949460506439209, 'learning_rate': 0.0002, 'epoch': 0.3}\n",
|
465 |
+
"{'loss': 2.6052, 'grad_norm': 5.733223915100098, 'learning_rate': 0.0002, 'epoch': 0.32}\n",
|
466 |
+
"{'loss': 2.673, 'grad_norm': 6.0587310791015625, 'learning_rate': 0.0002, 'epoch': 0.34}\n",
|
467 |
+
"{'loss': 2.4631, 'grad_norm': 4.734077453613281, 'learning_rate': 0.0002, 'epoch': 0.35}\n",
|
468 |
+
"{'loss': 2.7288, 'grad_norm': 6.7847700119018555, 'learning_rate': 0.0002, 'epoch': 0.37}\n",
|
469 |
+
"{'loss': 2.7797, 'grad_norm': 5.118943214416504, 'learning_rate': 0.0002, 'epoch': 0.39}\n",
|
470 |
+
"{'loss': 2.8644, 'grad_norm': 5.4167304039001465, 'learning_rate': 0.0002, 'epoch': 0.41}\n",
|
471 |
+
"{'loss': 2.5779, 'grad_norm': 6.73247766494751, 'learning_rate': 0.0002, 'epoch': 0.43}\n",
|
472 |
+
"{'loss': 2.6459, 'grad_norm': 4.644010066986084, 'learning_rate': 0.0002, 'epoch': 0.45}\n",
|
473 |
+
"{'loss': 2.5321, 'grad_norm': 6.347738265991211, 'learning_rate': 0.0002, 'epoch': 0.47}\n",
|
474 |
+
"{'loss': 2.6865, 'grad_norm': 5.185911655426025, 'learning_rate': 0.0002, 'epoch': 0.49}\n",
|
475 |
+
"{'loss': 2.4668, 'grad_norm': 5.355742454528809, 'learning_rate': 0.0002, 'epoch': 0.5}\n",
|
476 |
+
"{'loss': 2.8465, 'grad_norm': 5.4434380531311035, 'learning_rate': 0.0002, 'epoch': 0.52}\n",
|
477 |
+
"{'loss': 2.7376, 'grad_norm': 4.8459882736206055, 'learning_rate': 0.0002, 'epoch': 0.54}\n",
|
478 |
+
"{'loss': 2.5205, 'grad_norm': 5.886116981506348, 'learning_rate': 0.0002, 'epoch': 0.56}\n",
|
479 |
+
"{'loss': 2.7473, 'grad_norm': 4.946981906890869, 'learning_rate': 0.0002, 'epoch': 0.58}\n",
|
480 |
+
"{'loss': 2.6824, 'grad_norm': 6.349016189575195, 'learning_rate': 0.0002, 'epoch': 0.6}\n",
|
481 |
+
"{'loss': 2.6485, 'grad_norm': 5.024953365325928, 'learning_rate': 0.0002, 'epoch': 0.62}\n",
|
482 |
+
"{'loss': 2.7172, 'grad_norm': 5.583380222320557, 'learning_rate': 0.0002, 'epoch': 0.63}\n",
|
483 |
+
"{'loss': 2.5879, 'grad_norm': 6.582890033721924, 'learning_rate': 0.0002, 'epoch': 0.65}\n"
|
484 |
+
]
|
485 |
+
}
|
486 |
+
],
|
487 |
+
"source": [
|
488 |
+
"trainer.train()\n",
|
489 |
+
"trainer.model.save_pretrained(hyperparams['new_model_name'])"
|
490 |
+
]
|
491 |
+
}
|
492 |
+
],
|
493 |
+
"metadata": {
|
494 |
+
"kernelspec": {
|
495 |
+
"display_name": ".venv",
|
496 |
+
"language": "python",
|
497 |
+
"name": "python3"
|
498 |
+
},
|
499 |
+
"language_info": {
|
500 |
+
"codemirror_mode": {
|
501 |
+
"name": "ipython",
|
502 |
+
"version": 3
|
503 |
+
},
|
504 |
+
"file_extension": ".py",
|
505 |
+
"mimetype": "text/x-python",
|
506 |
+
"name": "python",
|
507 |
+
"nbconvert_exporter": "python",
|
508 |
+
"pygments_lexer": "ipython3",
|
509 |
+
"version": "3.12.7"
|
510 |
+
}
|
511 |
+
},
|
512 |
+
"nbformat": 4,
|
513 |
+
"nbformat_minor": 2
|
514 |
+
}
|
Gemma2_2B/finetune.py
DELETED
File without changes
|
Gemma2_2B/hyperparams.yaml
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model_name: "google/gemma-2-2b-it"
|
2 |
+
new_model_name: "gemma-2-2b-ft"
|
3 |
+
|
4 |
+
lora_r: 4
|
5 |
+
lora_alpha: 16
|
6 |
+
lora_dropout: 0.1
|
7 |
+
|
8 |
+
use_4bit: True
|
9 |
+
bnb_4bit_compute_dtype: "float16"
|
10 |
+
bnb_4bit_quant_type: "nf4"
|
11 |
+
use_nested_quant: False
|
12 |
+
|
13 |
+
output_dir: "./results"
|
14 |
+
num_train_epochs: 1
|
15 |
+
fp16: False
|
16 |
+
bf16: False
|
17 |
+
per_device_train_batch_size: 2
|
18 |
+
per_device_eval_batch_size: 2
|
19 |
+
gradient_accumulation_steps: 1
|
20 |
+
gradient_checkpointing: True
|
21 |
+
max_grad_norm: 0.3
|
22 |
+
learning_rate: 2e-4
|
23 |
+
weight_decay: 0.001
|
24 |
+
optimizer: "paged_adamw_32bit"
|
25 |
+
lr_scheduler_type: "constant"
|
26 |
+
max_steps: -1
|
27 |
+
warmup_ratio: 0.03
|
28 |
+
group_by_length: True
|
29 |
+
save_steps: 25
|
30 |
+
logging_steps: 25
|
31 |
+
|
32 |
+
max_seq_length: 40
|
33 |
+
packing: True
|
34 |
+
device_map: "auto"
|
Gemma2_2B/inference.ipynb
ADDED
@@ -0,0 +1,303 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"from huggingface_hub import login\n",
|
10 |
+
"from dotenv import load_dotenv\n",
|
11 |
+
"import os\n",
|
12 |
+
"load_dotenv()\n",
|
13 |
+
"\n",
|
14 |
+
"# Login to Hugging Face Hub\n",
|
15 |
+
"login(token=os.getenv(\"HUGGINGFACE_TOKEN\"))"
|
16 |
+
]
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"cell_type": "code",
|
20 |
+
"execution_count": null,
|
21 |
+
"metadata": {},
|
22 |
+
"outputs": [
|
23 |
+
{
|
24 |
+
"data": {
|
25 |
+
"application/vnd.jupyter.widget-view+json": {
|
26 |
+
"model_id": "d00ec085003e409d906784abc1f89dc1",
|
27 |
+
"version_major": 2,
|
28 |
+
"version_minor": 0
|
29 |
+
},
|
30 |
+
"text/plain": [
|
31 |
+
"config.json: 0%| | 0.00/838 [00:00<?, ?B/s]"
|
32 |
+
]
|
33 |
+
},
|
34 |
+
"metadata": {},
|
35 |
+
"output_type": "display_data"
|
36 |
+
},
|
37 |
+
{
|
38 |
+
"name": "stderr",
|
39 |
+
"output_type": "stream",
|
40 |
+
"text": [
|
41 |
+
"f:\\TADBot\\.venv\\Lib\\site-packages\\huggingface_hub\\file_download.py:139: UserWarning: `huggingface_hub` cache-system uses symlinks by default to efficiently store duplicated files but your machine does not support them in F:\\TADBot\\Gemma2_2B\\.cache\\models--google--gemma-2-2b-it. Caching files will still work but in a degraded version that might require more space on your disk. This warning can be disabled by setting the `HF_HUB_DISABLE_SYMLINKS_WARNING` environment variable. For more details, see https://huggingface.co/docs/huggingface_hub/how-to-cache#limitations.\n",
|
42 |
+
"To support symlinks on Windows, you either need to activate Developer Mode or to run Python as an administrator. In order to activate developer mode, see this article: https://docs.microsoft.com/en-us/windows/apps/get-started/enable-your-device-for-development\n",
|
43 |
+
" warnings.warn(message)\n"
|
44 |
+
]
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"data": {
|
48 |
+
"application/vnd.jupyter.widget-view+json": {
|
49 |
+
"model_id": "bdee67c51d7547a48e45f17db7fb3734",
|
50 |
+
"version_major": 2,
|
51 |
+
"version_minor": 0
|
52 |
+
},
|
53 |
+
"text/plain": [
|
54 |
+
"model.safetensors.index.json: 0%| | 0.00/24.2k [00:00<?, ?B/s]"
|
55 |
+
]
|
56 |
+
},
|
57 |
+
"metadata": {},
|
58 |
+
"output_type": "display_data"
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"data": {
|
62 |
+
"application/vnd.jupyter.widget-view+json": {
|
63 |
+
"model_id": "ad86eff32cc1447486e69c5f5f90e4a4",
|
64 |
+
"version_major": 2,
|
65 |
+
"version_minor": 0
|
66 |
+
},
|
67 |
+
"text/plain": [
|
68 |
+
"Downloading shards: 0%| | 0/2 [00:00<?, ?it/s]"
|
69 |
+
]
|
70 |
+
},
|
71 |
+
"metadata": {},
|
72 |
+
"output_type": "display_data"
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"data": {
|
76 |
+
"application/vnd.jupyter.widget-view+json": {
|
77 |
+
"model_id": "78cab016a2d54731a94ef45e85d65ddd",
|
78 |
+
"version_major": 2,
|
79 |
+
"version_minor": 0
|
80 |
+
},
|
81 |
+
"text/plain": [
|
82 |
+
"model-00001-of-00002.safetensors: 0%| | 0.00/4.99G [00:00<?, ?B/s]"
|
83 |
+
]
|
84 |
+
},
|
85 |
+
"metadata": {},
|
86 |
+
"output_type": "display_data"
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"data": {
|
90 |
+
"application/vnd.jupyter.widget-view+json": {
|
91 |
+
"model_id": "52b50ff81d0d481ab475878606935162",
|
92 |
+
"version_major": 2,
|
93 |
+
"version_minor": 0
|
94 |
+
},
|
95 |
+
"text/plain": [
|
96 |
+
"model-00002-of-00002.safetensors: 0%| | 0.00/241M [00:00<?, ?B/s]"
|
97 |
+
]
|
98 |
+
},
|
99 |
+
"metadata": {},
|
100 |
+
"output_type": "display_data"
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"data": {
|
104 |
+
"application/vnd.jupyter.widget-view+json": {
|
105 |
+
"model_id": "7dfed61b7e0a4338aee7ad14df4d85ca",
|
106 |
+
"version_major": 2,
|
107 |
+
"version_minor": 0
|
108 |
+
},
|
109 |
+
"text/plain": [
|
110 |
+
"Loading checkpoint shards: 0%| | 0/2 [00:00<?, ?it/s]"
|
111 |
+
]
|
112 |
+
},
|
113 |
+
"metadata": {},
|
114 |
+
"output_type": "display_data"
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"data": {
|
118 |
+
"application/vnd.jupyter.widget-view+json": {
|
119 |
+
"model_id": "9ac1e6a0b72a44d3a8a648bce2138c3d",
|
120 |
+
"version_major": 2,
|
121 |
+
"version_minor": 0
|
122 |
+
},
|
123 |
+
"text/plain": [
|
124 |
+
"generation_config.json: 0%| | 0.00/187 [00:00<?, ?B/s]"
|
125 |
+
]
|
126 |
+
},
|
127 |
+
"metadata": {},
|
128 |
+
"output_type": "display_data"
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"data": {
|
132 |
+
"application/vnd.jupyter.widget-view+json": {
|
133 |
+
"model_id": "f0129c204a454f22968aebe59b75ea1a",
|
134 |
+
"version_major": 2,
|
135 |
+
"version_minor": 0
|
136 |
+
},
|
137 |
+
"text/plain": [
|
138 |
+
"tokenizer_config.json: 0%| | 0.00/47.0k [00:00<?, ?B/s]"
|
139 |
+
]
|
140 |
+
},
|
141 |
+
"metadata": {},
|
142 |
+
"output_type": "display_data"
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"data": {
|
146 |
+
"application/vnd.jupyter.widget-view+json": {
|
147 |
+
"model_id": "ca55b303b11347cbbf5970327d2d8a82",
|
148 |
+
"version_major": 2,
|
149 |
+
"version_minor": 0
|
150 |
+
},
|
151 |
+
"text/plain": [
|
152 |
+
"tokenizer.model: 0%| | 0.00/4.24M [00:00<?, ?B/s]"
|
153 |
+
]
|
154 |
+
},
|
155 |
+
"metadata": {},
|
156 |
+
"output_type": "display_data"
|
157 |
+
},
|
158 |
+
{
|
159 |
+
"data": {
|
160 |
+
"application/vnd.jupyter.widget-view+json": {
|
161 |
+
"model_id": "33601521ca8544e7a98c88506257dd20",
|
162 |
+
"version_major": 2,
|
163 |
+
"version_minor": 0
|
164 |
+
},
|
165 |
+
"text/plain": [
|
166 |
+
"tokenizer.json: 0%| | 0.00/17.5M [00:00<?, ?B/s]"
|
167 |
+
]
|
168 |
+
},
|
169 |
+
"metadata": {},
|
170 |
+
"output_type": "display_data"
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"data": {
|
174 |
+
"application/vnd.jupyter.widget-view+json": {
|
175 |
+
"model_id": "f353232bbf6b4da3ac62e02fa7f58990",
|
176 |
+
"version_major": 2,
|
177 |
+
"version_minor": 0
|
178 |
+
},
|
179 |
+
"text/plain": [
|
180 |
+
"special_tokens_map.json: 0%| | 0.00/636 [00:00<?, ?B/s]"
|
181 |
+
]
|
182 |
+
},
|
183 |
+
"metadata": {},
|
184 |
+
"output_type": "display_data"
|
185 |
+
}
|
186 |
+
],
|
187 |
+
"source": [
|
188 |
+
"from transformers import AutoTokenizer, AutoModelForCausalLM\n",
|
189 |
+
"model_name = \"google/gemma-2-2b-it\"\n",
|
190 |
+
"model = AutoModelForCausalLM.from_pretrained(model_name, device_map=\"auto\", cache_dir=\".cache/\")\n",
|
191 |
+
"tokenizer = AutoTokenizer.from_pretrained(model_name, cache_dir=\".cache/\")"
|
192 |
+
]
|
193 |
+
},
|
194 |
+
{
|
195 |
+
"cell_type": "code",
|
196 |
+
"execution_count": 6,
|
197 |
+
"metadata": {},
|
198 |
+
"outputs": [
|
199 |
+
{
|
200 |
+
"name": "stdout",
|
201 |
+
"output_type": "stream",
|
202 |
+
"text": [
|
203 |
+
"Gemma2ForCausalLM(\n",
|
204 |
+
" (model): Gemma2Model(\n",
|
205 |
+
" (embed_tokens): Embedding(256000, 2304, padding_idx=0)\n",
|
206 |
+
" (layers): ModuleList(\n",
|
207 |
+
" (0-25): 26 x Gemma2DecoderLayer(\n",
|
208 |
+
" (self_attn): Gemma2Attention(\n",
|
209 |
+
" (q_proj): Linear(in_features=2304, out_features=2048, bias=False)\n",
|
210 |
+
" (k_proj): Linear(in_features=2304, out_features=1024, bias=False)\n",
|
211 |
+
" (v_proj): Linear(in_features=2304, out_features=1024, bias=False)\n",
|
212 |
+
" (o_proj): Linear(in_features=2048, out_features=2304, bias=False)\n",
|
213 |
+
" (rotary_emb): Gemma2RotaryEmbedding()\n",
|
214 |
+
" )\n",
|
215 |
+
" (mlp): Gemma2MLP(\n",
|
216 |
+
" (gate_proj): Linear(in_features=2304, out_features=9216, bias=False)\n",
|
217 |
+
" (up_proj): Linear(in_features=2304, out_features=9216, bias=False)\n",
|
218 |
+
" (down_proj): Linear(in_features=9216, out_features=2304, bias=False)\n",
|
219 |
+
" (act_fn): PytorchGELUTanh()\n",
|
220 |
+
" )\n",
|
221 |
+
" (input_layernorm): Gemma2RMSNorm((2304,), eps=1e-06)\n",
|
222 |
+
" (pre_feedforward_layernorm): Gemma2RMSNorm((2304,), eps=1e-06)\n",
|
223 |
+
" (post_feedforward_layernorm): Gemma2RMSNorm((2304,), eps=1e-06)\n",
|
224 |
+
" (post_attention_layernorm): Gemma2RMSNorm((2304,), eps=1e-06)\n",
|
225 |
+
" )\n",
|
226 |
+
" )\n",
|
227 |
+
" (norm): Gemma2RMSNorm((2304,), eps=1e-06)\n",
|
228 |
+
" )\n",
|
229 |
+
" (lm_head): Linear(in_features=2304, out_features=256000, bias=False)\n",
|
230 |
+
")\n"
|
231 |
+
]
|
232 |
+
}
|
233 |
+
],
|
234 |
+
"source": [
|
235 |
+
"print(model)"
|
236 |
+
]
|
237 |
+
},
|
238 |
+
{
|
239 |
+
"cell_type": "code",
|
240 |
+
"execution_count": 9,
|
241 |
+
"metadata": {},
|
242 |
+
"outputs": [
|
243 |
+
{
|
244 |
+
"name": "stdout",
|
245 |
+
"output_type": "stream",
|
246 |
+
"text": [
|
247 |
+
"<bos>What should I do on a trip to Europe?\n",
|
248 |
+
"\n",
|
249 |
+
"That's a great question! To give you the best advice, I need a little more information. Tell me about:\n",
|
250 |
+
"\n",
|
251 |
+
"**1. Your Interests:** \n",
|
252 |
+
" * What kind of things do you enjoy doing? (History, art, food, nightlife, nature, adventure, relaxation, etc.)\n",
|
253 |
+
" * Are there any specific places or activities you've always wanted to experience?\n",
|
254 |
+
"\n",
|
255 |
+
"**2. Your Travel Style:**\n",
|
256 |
+
" * Do you prefer to travel on your own, with a partner, or with a group?\n",
|
257 |
+
" * Do you like to plan everything in advance or be more spontaneous?\n",
|
258 |
+
" * What's your budget like?\n",
|
259 |
+
"\n",
|
260 |
+
"**3. Your Trip Details:**\n",
|
261 |
+
" * How long will you be traveling for?\n",
|
262 |
+
" * What time of year are you planning to go?\n",
|
263 |
+
" * Do you have any specific destinations in mind?\n",
|
264 |
+
"\n",
|
265 |
+
"Once I have this information, I can give you personalized recommendations for your European adventure! \n",
|
266 |
+
"<end_of_turn>\n",
|
267 |
+
"CPU times: total: 7.23 s\n",
|
268 |
+
"Wall time: 7.56 s\n"
|
269 |
+
]
|
270 |
+
}
|
271 |
+
],
|
272 |
+
"source": [
|
273 |
+
"%%time\n",
|
274 |
+
"input_text = \"What should I do on a trip to Europe?\"\n",
|
275 |
+
"\n",
|
276 |
+
"input_ids = tokenizer(input_text, return_tensors=\"pt\").to(\"cuda\")\n",
|
277 |
+
"outputs = model.generate(**input_ids, max_length=2048)\n",
|
278 |
+
"print(tokenizer.decode(outputs[0]))"
|
279 |
+
]
|
280 |
+
}
|
281 |
+
],
|
282 |
+
"metadata": {
|
283 |
+
"kernelspec": {
|
284 |
+
"display_name": ".venv",
|
285 |
+
"language": "python",
|
286 |
+
"name": "python3"
|
287 |
+
},
|
288 |
+
"language_info": {
|
289 |
+
"codemirror_mode": {
|
290 |
+
"name": "ipython",
|
291 |
+
"version": 3
|
292 |
+
},
|
293 |
+
"file_extension": ".py",
|
294 |
+
"mimetype": "text/x-python",
|
295 |
+
"name": "python",
|
296 |
+
"nbconvert_exporter": "python",
|
297 |
+
"pygments_lexer": "ipython3",
|
298 |
+
"version": "3.12.7"
|
299 |
+
}
|
300 |
+
},
|
301 |
+
"nbformat": 4,
|
302 |
+
"nbformat_minor": 2
|
303 |
+
}
|
Gemma2_2B/inference.py
DELETED
File without changes
|
pyproject.toml
CHANGED
@@ -25,6 +25,7 @@ dependencies = [
|
|
25 |
"python-dotenv>=1.0.1",
|
26 |
"ipykernel>=6.29.5",
|
27 |
"ipywidgets>=8.1.5",
|
|
|
28 |
]
|
29 |
|
30 |
[tool.uv.sources]
|
|
|
25 |
"python-dotenv>=1.0.1",
|
26 |
"ipykernel>=6.29.5",
|
27 |
"ipywidgets>=8.1.5",
|
28 |
+
"pyyaml>=6.0.2",
|
29 |
]
|
30 |
|
31 |
[tool.uv.sources]
|
uv.lock
CHANGED
@@ -800,6 +800,7 @@ dependencies = [
|
|
800 |
{ name = "numpy", marker = "(platform_machine != 'aarch64' and python_full_version >= '3.12') or (platform_system != 'Linux' and python_full_version >= '3.12') or platform_system == 'Darwin' or (platform_machine == 'aarch64' and platform_system == 'Linux')" },
|
801 |
{ name = "peft", marker = "(platform_machine != 'aarch64' and python_full_version >= '3.12') or (platform_system != 'Linux' and python_full_version >= '3.12') or platform_system == 'Darwin' or (platform_machine == 'aarch64' and platform_system == 'Linux')" },
|
802 |
{ name = "python-dotenv", marker = "(platform_machine != 'aarch64' and python_full_version >= '3.12') or (platform_system != 'Linux' and python_full_version >= '3.12') or platform_system == 'Darwin' or (platform_machine == 'aarch64' and platform_system == 'Linux')" },
|
|
|
803 |
{ name = "ruff", marker = "(platform_machine != 'aarch64' and python_full_version >= '3.12') or (platform_system != 'Linux' and python_full_version >= '3.12') or platform_system == 'Darwin' or (platform_machine == 'aarch64' and platform_system == 'Linux')" },
|
804 |
{ name = "tensorboard", marker = "(platform_machine != 'aarch64' and python_full_version >= '3.12') or (platform_system != 'Linux' and python_full_version >= '3.12') or platform_system == 'Darwin' or (platform_machine == 'aarch64' and platform_system == 'Linux')" },
|
805 |
{ name = "thop", marker = "(platform_machine != 'aarch64' and python_full_version >= '3.12') or (platform_system != 'Linux' and python_full_version >= '3.12') or platform_system == 'Darwin' or (platform_machine == 'aarch64' and platform_system == 'Linux')" },
|
@@ -836,6 +837,7 @@ requires-dist = [
|
|
836 |
{ name = "numpy", specifier = ">=1.26.4" },
|
837 |
{ name = "peft", specifier = ">=0.13.2" },
|
838 |
{ name = "python-dotenv", specifier = ">=1.0.1" },
|
|
|
839 |
{ name = "ruff", specifier = ">=0.7.3" },
|
840 |
{ name = "tensorboard", specifier = ">=2.18.0" },
|
841 |
{ name = "thop", specifier = ">=0.1.1.post2209072238" },
|
|
|
800 |
{ name = "numpy", marker = "(platform_machine != 'aarch64' and python_full_version >= '3.12') or (platform_system != 'Linux' and python_full_version >= '3.12') or platform_system == 'Darwin' or (platform_machine == 'aarch64' and platform_system == 'Linux')" },
|
801 |
{ name = "peft", marker = "(platform_machine != 'aarch64' and python_full_version >= '3.12') or (platform_system != 'Linux' and python_full_version >= '3.12') or platform_system == 'Darwin' or (platform_machine == 'aarch64' and platform_system == 'Linux')" },
|
802 |
{ name = "python-dotenv", marker = "(platform_machine != 'aarch64' and python_full_version >= '3.12') or (platform_system != 'Linux' and python_full_version >= '3.12') or platform_system == 'Darwin' or (platform_machine == 'aarch64' and platform_system == 'Linux')" },
|
803 |
+
{ name = "pyyaml", marker = "(platform_machine != 'aarch64' and python_full_version >= '3.12') or (platform_system != 'Linux' and python_full_version >= '3.12') or platform_system == 'Darwin' or (platform_machine == 'aarch64' and platform_system == 'Linux')" },
|
804 |
{ name = "ruff", marker = "(platform_machine != 'aarch64' and python_full_version >= '3.12') or (platform_system != 'Linux' and python_full_version >= '3.12') or platform_system == 'Darwin' or (platform_machine == 'aarch64' and platform_system == 'Linux')" },
|
805 |
{ name = "tensorboard", marker = "(platform_machine != 'aarch64' and python_full_version >= '3.12') or (platform_system != 'Linux' and python_full_version >= '3.12') or platform_system == 'Darwin' or (platform_machine == 'aarch64' and platform_system == 'Linux')" },
|
806 |
{ name = "thop", marker = "(platform_machine != 'aarch64' and python_full_version >= '3.12') or (platform_system != 'Linux' and python_full_version >= '3.12') or platform_system == 'Darwin' or (platform_machine == 'aarch64' and platform_system == 'Linux')" },
|
|
|
837 |
{ name = "numpy", specifier = ">=1.26.4" },
|
838 |
{ name = "peft", specifier = ">=0.13.2" },
|
839 |
{ name = "python-dotenv", specifier = ">=1.0.1" },
|
840 |
+
{ name = "pyyaml", specifier = ">=6.0.2" },
|
841 |
{ name = "ruff", specifier = ">=0.7.3" },
|
842 |
{ name = "tensorboard", specifier = ">=2.18.0" },
|
843 |
{ name = "thop", specifier = ">=0.1.1.post2209072238" },
|