|
import pathlib |
|
|
|
import pydantic |
|
from transformers import PretrainedConfig |
|
|
|
MAX_DOWNLOAD_TIME = 0.2 |
|
|
|
IMAGE_DOWNLOAD_PATH = pathlib.Path("./data/images") |
|
WANDB_LOG_PATH = pathlib.Path("/tmp/wandb_logs") |
|
MODEL_PATH = pathlib.Path("/tmp/models") |
|
VISION_MODEL_PATH = MODEL_PATH / "vision" |
|
TEXT_MODEL_PATH = MODEL_PATH / "text" |
|
|
|
IMAGE_DOWNLOAD_PATH.mkdir(parents=True, exist_ok=True) |
|
WANDB_LOG_PATH.mkdir(parents=True, exist_ok=True) |
|
MODEL_PATH.mkdir(parents=True, exist_ok=True) |
|
VISION_MODEL_PATH.mkdir(parents=True, exist_ok=True) |
|
TEXT_MODEL_PATH.mkdir(parents=True, exist_ok=True) |
|
|
|
MODEL_NAME = "tiny_clip" |
|
REPO_ID = "sachin/clip-model" |
|
|
|
WANDB_ENTITY = "sachinruk" |
|
|
|
|
|
class DataConfig(pydantic.BaseModel): |
|
buffer_size: int = 1000 |
|
data_len: int = 100 |
|
train_len: int = 90 |
|
small_dataset: str = "laion/220k-gpt4vision-captions-from-livis" |
|
large_dataset: str = "laion/laion400m" |
|
dataset: str = small_dataset |
|
|
|
|
|
class TinyCLIPTextConfig(PretrainedConfig): |
|
model_type = "text" |
|
|
|
def __init__( |
|
self, |
|
text_model: str = "microsoft/xtremedistil-l6-h256-uncased", |
|
projection_layers: int = 3, |
|
embed_dims: int = 512, |
|
max_len: int = 128, |
|
cls_type: bool = True, |
|
**kwargs, |
|
): |
|
self.text_model = text_model |
|
self.projection_layers = projection_layers |
|
self.embed_dims = embed_dims |
|
self.max_len = max_len |
|
self.cls_type = cls_type |
|
super().__init__(**kwargs) |
|
|
|
|
|
class TinyCLIPVisionConfig(PretrainedConfig): |
|
model_type = "vision" |
|
|
|
def __init__( |
|
self, |
|
vision_model: str = "edgenext_small", |
|
projection_layers: int = 3, |
|
embed_dims: int = 512, |
|
**kwargs, |
|
): |
|
self.vision_model = vision_model |
|
self.projection_layers = projection_layers |
|
self.embed_dims = embed_dims |
|
super().__init__(**kwargs) |
|
|
|
|
|
class TinyCLIPConfig(PretrainedConfig): |
|
model_type = "clip" |
|
|
|
def __init__( |
|
self, |
|
text_model: str = "microsoft/xtremedistil-l6-h256-uncased", |
|
vision_model: str = "edgenext_small", |
|
projection_layers: int = 3, |
|
embed_dim: int = 512, |
|
max_len: int = 128, |
|
cls_type: bool = True, |
|
freeze_vision_base: bool = False, |
|
freeze_text_base: bool = True, |
|
loss_type: str = "cyclip", |
|
**kwargs, |
|
): |
|
self.text_config = TinyCLIPTextConfig( |
|
text_model=text_model, |
|
projection_layers=projection_layers, |
|
embed_dims=embed_dim, |
|
max_len=max_len, |
|
cls_type=cls_type, |
|
) |
|
self.vision_config = TinyCLIPVisionConfig( |
|
vision_model=vision_model, projection_layers=projection_layers, embed_dims=embed_dim |
|
) |
|
self.freeze_vision_base = freeze_vision_base |
|
self.freeze_text_base = freeze_text_base |
|
self.loss_type = loss_type |
|
super().__init__(**kwargs) |
|
|
|
@classmethod |
|
def from_dict(cls, config_dict, **kwargs): |
|
text_config_dict = config_dict.pop("text_config", {}) |
|
text_config = TinyCLIPTextConfig.from_dict(text_config_dict) |
|
|
|
vision_config_dict = config_dict.pop("vision_config", {}) |
|
vision_config = TinyCLIPVisionConfig.from_dict(vision_config_dict) |
|
|
|
return cls(text_config=text_config, vision_config=vision_config, **config_dict, **kwargs) |
|
|
|
|
|
class TrainerConfig(pydantic.BaseModel): |
|
epochs: int = 20 |
|
batch_size: int = 64 |
|
learning_rate: float = 5e-4 |
|
lr_scheduler: bool = True |
|
accumulate_grad_batches: int = 1 |
|
temperature: float = 1.0 |
|
vision_freeze_layers: int = 2 |
|
lambda_1: float = 1.0 |
|
lambda_2: float = 1.0 |
|
|
|
val_check_interval: int = 1000 |
|
log_every_n_steps: int = 100 |
|
debug: bool = False |
|
|
|
run_openai_clip: bool = False |
|
|
|
_model_config: TinyCLIPConfig = TinyCLIPConfig() |
|
_data_config: DataConfig = DataConfig() |
|
|
|
def __init__(self, **data): |
|
super().__init__(**data) |
|
if "_model_config" in data: |
|
self._model_config = TinyCLIPConfig.from_dict(data["_model_config"]) |
|
|