sachin commited on
Commit
903ad7c
1 Parent(s): c73f81d

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +30 -0
README.md ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Vit2-DistilGPT2
2
+ This model takes in an image and outputs a caption. It was trained using the Coco dataset and the full training script can be found in [this kaggle kernel](https://www.kaggle.com/sachin/visionencoderdecoder-model-training)
3
+
4
+ ## Usage
5
+ ```python
6
+ import Image
7
+ from transformers import AutoModel, GPT2Tokenizer, ViTFeatureExtractor
8
+
9
+ model = AutoModel.from_pretrained("sachin/vit2distilgpt2")
10
+ vit_feature_extractor = ViTFeatureExtractor.from_pretrained("google/vit-base-patch16-224-in21k")
11
+
12
+ # make sure GPT2 appends EOS in begin and end
13
+ def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
14
+ outputs = [self.bos_token_id] + token_ids_0 + [self.eos_token_id]
15
+ return outputs
16
+
17
+ GPT2Tokenizer.build_inputs_with_special_tokens = build_inputs_with_special_tokens
18
+ gpt2_tokenizer = GPT2Tokenizer.from_pretrained("distilgpt2")
19
+ # set pad_token_id to unk_token_id -> be careful here as unk_token_id == eos_token_id == bos_token_id
20
+ gpt2_tokenizer.pad_token = gpt2_tokenizer.unk_token
21
+
22
+ image = (Image.open(image_path).convert("RGB"), return_tensors="pt").pixel_values
23
+ encoder_outputs = model.generate(image.unsqueeze(0))
24
+ generated_sentences = gpt2_tokenizer.batch_decode(encoder_outputs, skip_special_tokens=True)
25
+ ```
26
+ Note that the output sentence may be repeated, hence a post processing step may be required.
27
+
28
+ ## Bias Warning
29
+ This model may be biased due to dataset, lack of long training and the model itself. The following gender bias is an example.
30
+ ![](https://i.imgur.com/9zVN022.png)