sachinkum0009 commited on
Commit
7e1681c
1 Parent(s): 1703361

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 261.08 +/- 23.94
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x781398a29990>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x781398a29a20>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x781398a29ab0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x781398a29b40>", "_build": "<function ActorCriticPolicy._build at 0x781398a29bd0>", "forward": "<function ActorCriticPolicy.forward at 0x781398a29c60>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x781398a29cf0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x781398a29d80>", "_predict": "<function ActorCriticPolicy._predict at 0x781398a29e10>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x781398a29ea0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x781398a29f30>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x781398a29fc0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7813989ca300>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1000448, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1720186245549556693, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAID5ab2MwpA/i85hvYcFjL6kHLq8dL3DOAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGsKcer+5vuMAWyUTWcBjAF0lEdAnb5Rh2GIsXV9lChoBkdAbQG8e0XxfGgHTagBaAhHQJ3Bd0OmR/51fZQoaAZHQG4r5ggHNX5oB011AWgIR0CdxgSUTtb+dX2UKGgGR0BwPJwjt5UtaAdNYwFoCEdAncjMEzO5a3V9lChoBkdAam6dGy5ZsGgHTVkBaAhHQJ3K6JN0vGp1fZQoaAZHQG0FUb1h9b5oB01bAWgIR0CdzkUDuBtldX2UKGgGR0Bsafsw+MZQaAdNSQFoCEdAndA4CdSVGHV9lChoBkdAcB8FvAGjbmgHTWUBaAhHQJ3Sa0fHPu51fZQoaAZHQGtCy4vvjOtoB01RAWgIR0Cd1agIQe3hdX2UKGgGR0BxC1Zid8RdaAdNigFoCEdAndgVm4Ajp3V9lChoBkdAbzDymygPE2gHTasBaAhHQJ3atHLA57x1fZQoaAZHQHIMVTJhfBxoB01/AWgIR0Cd3kefqX4TdX2UKGgGR0BvPZaJQ+EAaAdNWQFoCEdAneBa508vEnV9lChoBkdAcPAFn7Hhj2gHTU4BaAhHQJ3iZ3Roh6l1fZQoaAZHQCUOR/3Fkx1oB00dAWgIR0Cd5WZR8+ibdX2UKGgGR0BtHhwQ176YaAdNUwFoCEdAned2dmQKbHV9lChoBkdAb73HjIaLoGgHTXABaAhHQJ3ppBdD6WR1fZQoaAZHQG1AmLDQ7cRoB01WAWgIR0Cd7PewLVnVdX2UKGgGR0BxXOQvHtF8aAdNSAFoCEdAne774WUKRnV9lChoBkdAcONQN0/4ZmgHTToBaAhHQJ3xQlHBk7R1fZQoaAZHQG/XjDbah6BoB019AWgIR0Cd9dz5XU6QdX2UKGgGR0BvGtB2OhkBaAdNpQFoCEdAnfldV/+bVnV9lChoBkdAbTv+DvmYB2gHTVYBaAhHQJ39LlNlAeJ1fZQoaAZHQG36hnanJkpoB01BAWgIR0Cd/0HVPN3XdX2UKGgGR0BwGWzkZJkHaAdNcwFoCEdAngGHIIWxhXV9lChoBkdAQ35okAxSHmgHS71oCEdAngKrv1DjR3V9lChoBkdAbh9B9Cu2Z2gHTaABaAhHQJ4GfItDlYF1fZQoaAZHQHCTiKFZgXxoB01JAWgIR0CeCIItUXHjdX2UKGgGR0BxC/Y+Sr5qaAdNZgFoCEdAngqqfnOjZnV9lChoBkdAbnCPuogmq2gHTUwBaAhHQJ4N93FDOTt1fZQoaAZHQGOhyAQQL/loB03oA2gIR0CeFVqmTC+DdX2UKGgGR0Bwe9d4VymzaAdNSQFoCEdAnhdWYv38GnV9lChoBkdAbnsj59E1EWgHTTsBaAhHQJ4ZSKR+z+p1fZQoaAZHQDKAM1CPZIxoB0u3aAhHQJ4bmzVtoBd1fZQoaAZHQHEJMX3xnWdoB01OAWgIR0CeHbI1cdHUdX2UKGgGR0BsiSAQQL/kaAdNOQFoCEdAnh+Var3j/HV9lChoBkdAcnGWXTmW+2gHTYYBaAhHQJ4jQbNr0rd1fZQoaAZHQG+HYHoouwpoB00wAWgIR0CeJauivgWKdX2UKGgGR0Ao+6ZH/cWTaAdLvWgIR0CeJxcWj45+dX2UKGgGR0BvcGQwK0D2aAdNQQFoCEdAninJ+pfhM3V9lChoBkdAbqVGb1AZ9GgHTVsBaAhHQJ4tzjrAxi51fZQoaAZHQHAKvu1F6RhoB01/AWgIR0CeMCGjKxLTdX2UKGgGR0BpBKzollbvaAdNnAFoCEdAnjPia/h2n3V9lChoBkdAYhHLg4wRG2gHTegDaAhHQJ46Jm29cr11fZQoaAZHQG7IUhePaL5oB01iAWgIR0CePZUMG5c1dX2UKGgGR0Bu9HjCHh0haAdNSgFoCEdAnj+RzRx95XV9lChoBkdAcGNx3FDOT2gHTU4BaAhHQJ5Bnm0VrRB1fZQoaAZHQHAdpKraM75oB01bAWgIR0CeROiblRxcdX2UKGgGR0BrYJxo7FKkaAdNQQFoCEdAnkbfgFX7tXV9lChoBkfAKbbHIZIg/2gHS+1oCEdAnkhL8vVVgnV9lChoBkdAVlJsXSBsh2gHTegDaAhHQJ5Pv6KtPpJ1fZQoaAZHQG90JKJ2t+1oB01ZAWgIR0CeUyqPwNLEdX2UKGgGR0BwMwZuQ6p6aAdNNwFoCEdAnlVzjR2KVXV9lChoBkdAbLr78ejmCGgHTVMBaAhHQJ5X8NVinYR1fZQoaAZHQHA8iwr1/UhoB01EAWgIR0CeXEbQTmGNdX2UKGgGR0BqlCYPXkHVaAdNMgFoCEdAnl7s0gr6L3V9lChoBkdAbvol6Z6Uq2gHTTkBaAhHQJ5g2+yquKZ1fZQoaAZHQHCtcIAwPAhoB003AWgIR0CeZAHd43WGdX2UKGgGR0BwV6Xb/Ot5aAdNbQFoCEdAnmZAHE/B33V9lChoBkdAWzcvkBCD3GgHTegDaAhHQJ5tnnNgSe11fZQoaAZHQG+6FQEZBLRoB01rAWgIR0Ceb9mRNh3JdX2UKGgGR0Bwiat7rs0IaAdNSAFoCEdAnnMWZE2HcnV9lChoBkdAcaaAh0QsgGgHTacBaAhHQJ51tFLFn7J1fZQoaAZHQHDrRZlnRLNoB01iAWgIR0Ced96TW5H3dX2UKGgGR0Btx+f29L6DaAdNSwFoCEdAnntBQemvXHV9lChoBkdASfRFocrAg2gHTTIBaAhHQJ59G7yxzJZ1fZQoaAZHQHBmI3eenQ9oB00yAWgIR0CefvjtXxOMdX2UKGgGR0BwZ2W9lEqlaAdNTAFoCEdAnoI3RkVer3V9lChoBkdAbyapgCwKSmgHTWgBaAhHQJ6Eou01IiF1fZQoaAZHQG+Z5ULlV95oB01oAWgIR0CehuQsPJ7tdX2UKGgGR0BwYdnctXgcaAdNngFoCEdAnovIBJZntnV9lChoBkdAcb/e40/GEWgHTT8BaAhHQJ6OY+X7cfx1fZQoaAZHQHJA4cJdB0JoB01RAWgIR0CekTiO/+KkdX2UKGgGR0Bu2Z3aBZp0aAdNQwFoCEdAnpSL9deIEnV9lChoBkfAQE+ig00m+mgHS9loCEdAnpXc8YAKfHV9lChoBkdAchopcHGCI2gHTZIBaAhHQJ6YUhePaL51fZQoaAZHQHAE4bjtG/hoB01mAWgIR0Cem7+10DEFdX2UKGgGR0BySbe/Ho5haAdNegFoCEdAnp4DisGPgnV9lChoBkdAb8xIPsiSq2gHTWoBaAhHQJ6gNdGAkLR1fZQoaAZHQGu1tG/etS1oB01hAWgIR0Ceo4UONHYpdX2UKGgGR0Bs2peb/ffoaAdNZQFoCEdAnqXI6CDmKnV9lChoBkdAbGX4+KTB7GgHTVYBaAhHQJ6n4+nqFAV1fZQoaAZHQG9JifQKKHhoB01gAWgIR0Ceq0XYDklvdX2UKGgGR0Bwx1AY51eTaAdNfQFoCEdAnq2brHEMs3V9lChoBkdAb2EWxhUip2gHTUwBaAhHQJ6vv6BRQ791fZQoaAZHQHAWlbqyGBZoB001AWgIR0CesuhtLteEdX2UKGgGR0BF/ABtDUmVaAdNJQFoCEdAnrTGj0th/nV9lChoBkdAcFPoCuEEkmgHTTwBaAhHQJ62qMUAT7F1fZQoaAZHQHBKno5ggHNoB01kAWgIR0CeujrylN1ydX2UKGgGR0BwH/JxNqQBaAdNZAFoCEdAnrz2HxjJ+3V9lChoBkdAb0EEkjX4CmgHTZkBaAhHQJ7APb/Ot4l1fZQoaAZHQHBVdCJGe+VoB01mAWgIR0CexFiG34KydX2UKGgGR0Btt3xOLzf8aAdNXQFoCEdAnsZ8Kw6hg3V9lChoBkdAbFFSeAd4mmgHTVYBaAhHQJ7IlWKdhAp1fZQoaAZHQG/fVB+nZTRoB02QAWgIR0CezDrnDBM0dX2UKGgGR0Bt8Ss0YTCcaAdNTAFoCEdAns5P8VHnU3V9lChoBkdAcfnBZpztC2gHTZkBaAhHQJ7Qu2/i5ut1fZQoaAZHQGt8JgCwKShoB01EAWgIR0Ce0/49X9zfdX2UKGgGR0BwCK+evpyIaAdNTwFoCEdAntYQ57w8XHV9lChoBkdAcLQ3kPtlZ2gHTVIBaAhHQJ7YJLoOhCd1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3908, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3cfe95f1b1dd469ecb965359fc459f9ac339e22b03e8b19daf0fab1924da76ba
3
+ size 147422
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x781398a29990>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x781398a29a20>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x781398a29ab0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x781398a29b40>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x781398a29bd0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x781398a29c60>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x781398a29cf0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x781398a29d80>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x781398a29e10>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x781398a29ea0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x781398a29f30>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x781398a29fc0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7813989ca300>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1000448,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1720186245549556693,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAID5ab2MwpA/i85hvYcFjL6kHLq8dL3DOAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.00044800000000000395,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVPwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGsKcer+5vuMAWyUTWcBjAF0lEdAnb5Rh2GIsXV9lChoBkdAbQG8e0XxfGgHTagBaAhHQJ3Bd0OmR/51fZQoaAZHQG4r5ggHNX5oB011AWgIR0CdxgSUTtb+dX2UKGgGR0BwPJwjt5UtaAdNYwFoCEdAncjMEzO5a3V9lChoBkdAam6dGy5ZsGgHTVkBaAhHQJ3K6JN0vGp1fZQoaAZHQG0FUb1h9b5oB01bAWgIR0CdzkUDuBtldX2UKGgGR0Bsafsw+MZQaAdNSQFoCEdAndA4CdSVGHV9lChoBkdAcB8FvAGjbmgHTWUBaAhHQJ3Sa0fHPu51fZQoaAZHQGtCy4vvjOtoB01RAWgIR0Cd1agIQe3hdX2UKGgGR0BxC1Zid8RdaAdNigFoCEdAndgVm4Ajp3V9lChoBkdAbzDymygPE2gHTasBaAhHQJ3atHLA57x1fZQoaAZHQHIMVTJhfBxoB01/AWgIR0Cd3kefqX4TdX2UKGgGR0BvPZaJQ+EAaAdNWQFoCEdAneBa508vEnV9lChoBkdAcPAFn7Hhj2gHTU4BaAhHQJ3iZ3Roh6l1fZQoaAZHQCUOR/3Fkx1oB00dAWgIR0Cd5WZR8+ibdX2UKGgGR0BtHhwQ176YaAdNUwFoCEdAned2dmQKbHV9lChoBkdAb73HjIaLoGgHTXABaAhHQJ3ppBdD6WR1fZQoaAZHQG1AmLDQ7cRoB01WAWgIR0Cd7PewLVnVdX2UKGgGR0BxXOQvHtF8aAdNSAFoCEdAne774WUKRnV9lChoBkdAcONQN0/4ZmgHTToBaAhHQJ3xQlHBk7R1fZQoaAZHQG/XjDbah6BoB019AWgIR0Cd9dz5XU6QdX2UKGgGR0BvGtB2OhkBaAdNpQFoCEdAnfldV/+bVnV9lChoBkdAbTv+DvmYB2gHTVYBaAhHQJ39LlNlAeJ1fZQoaAZHQG36hnanJkpoB01BAWgIR0Cd/0HVPN3XdX2UKGgGR0BwGWzkZJkHaAdNcwFoCEdAngGHIIWxhXV9lChoBkdAQ35okAxSHmgHS71oCEdAngKrv1DjR3V9lChoBkdAbh9B9Cu2Z2gHTaABaAhHQJ4GfItDlYF1fZQoaAZHQHCTiKFZgXxoB01JAWgIR0CeCIItUXHjdX2UKGgGR0BxC/Y+Sr5qaAdNZgFoCEdAngqqfnOjZnV9lChoBkdAbnCPuogmq2gHTUwBaAhHQJ4N93FDOTt1fZQoaAZHQGOhyAQQL/loB03oA2gIR0CeFVqmTC+DdX2UKGgGR0Bwe9d4VymzaAdNSQFoCEdAnhdWYv38GnV9lChoBkdAbnsj59E1EWgHTTsBaAhHQJ4ZSKR+z+p1fZQoaAZHQDKAM1CPZIxoB0u3aAhHQJ4bmzVtoBd1fZQoaAZHQHEJMX3xnWdoB01OAWgIR0CeHbI1cdHUdX2UKGgGR0BsiSAQQL/kaAdNOQFoCEdAnh+Var3j/HV9lChoBkdAcnGWXTmW+2gHTYYBaAhHQJ4jQbNr0rd1fZQoaAZHQG+HYHoouwpoB00wAWgIR0CeJauivgWKdX2UKGgGR0Ao+6ZH/cWTaAdLvWgIR0CeJxcWj45+dX2UKGgGR0BvcGQwK0D2aAdNQQFoCEdAninJ+pfhM3V9lChoBkdAbqVGb1AZ9GgHTVsBaAhHQJ4tzjrAxi51fZQoaAZHQHAKvu1F6RhoB01/AWgIR0CeMCGjKxLTdX2UKGgGR0BpBKzollbvaAdNnAFoCEdAnjPia/h2n3V9lChoBkdAYhHLg4wRG2gHTegDaAhHQJ46Jm29cr11fZQoaAZHQG7IUhePaL5oB01iAWgIR0CePZUMG5c1dX2UKGgGR0Bu9HjCHh0haAdNSgFoCEdAnj+RzRx95XV9lChoBkdAcGNx3FDOT2gHTU4BaAhHQJ5Bnm0VrRB1fZQoaAZHQHAdpKraM75oB01bAWgIR0CeROiblRxcdX2UKGgGR0BrYJxo7FKkaAdNQQFoCEdAnkbfgFX7tXV9lChoBkfAKbbHIZIg/2gHS+1oCEdAnkhL8vVVgnV9lChoBkdAVlJsXSBsh2gHTegDaAhHQJ5Pv6KtPpJ1fZQoaAZHQG90JKJ2t+1oB01ZAWgIR0CeUyqPwNLEdX2UKGgGR0BwMwZuQ6p6aAdNNwFoCEdAnlVzjR2KVXV9lChoBkdAbLr78ejmCGgHTVMBaAhHQJ5X8NVinYR1fZQoaAZHQHA8iwr1/UhoB01EAWgIR0CeXEbQTmGNdX2UKGgGR0BqlCYPXkHVaAdNMgFoCEdAnl7s0gr6L3V9lChoBkdAbvol6Z6Uq2gHTTkBaAhHQJ5g2+yquKZ1fZQoaAZHQHCtcIAwPAhoB003AWgIR0CeZAHd43WGdX2UKGgGR0BwV6Xb/Ot5aAdNbQFoCEdAnmZAHE/B33V9lChoBkdAWzcvkBCD3GgHTegDaAhHQJ5tnnNgSe11fZQoaAZHQG+6FQEZBLRoB01rAWgIR0Ceb9mRNh3JdX2UKGgGR0Bwiat7rs0IaAdNSAFoCEdAnnMWZE2HcnV9lChoBkdAcaaAh0QsgGgHTacBaAhHQJ51tFLFn7J1fZQoaAZHQHDrRZlnRLNoB01iAWgIR0Ced96TW5H3dX2UKGgGR0Btx+f29L6DaAdNSwFoCEdAnntBQemvXHV9lChoBkdASfRFocrAg2gHTTIBaAhHQJ59G7yxzJZ1fZQoaAZHQHBmI3eenQ9oB00yAWgIR0CefvjtXxOMdX2UKGgGR0BwZ2W9lEqlaAdNTAFoCEdAnoI3RkVer3V9lChoBkdAbyapgCwKSmgHTWgBaAhHQJ6Eou01IiF1fZQoaAZHQG+Z5ULlV95oB01oAWgIR0CehuQsPJ7tdX2UKGgGR0BwYdnctXgcaAdNngFoCEdAnovIBJZntnV9lChoBkdAcb/e40/GEWgHTT8BaAhHQJ6OY+X7cfx1fZQoaAZHQHJA4cJdB0JoB01RAWgIR0CekTiO/+KkdX2UKGgGR0Bu2Z3aBZp0aAdNQwFoCEdAnpSL9deIEnV9lChoBkfAQE+ig00m+mgHS9loCEdAnpXc8YAKfHV9lChoBkdAchopcHGCI2gHTZIBaAhHQJ6YUhePaL51fZQoaAZHQHAE4bjtG/hoB01mAWgIR0Cem7+10DEFdX2UKGgGR0BySbe/Ho5haAdNegFoCEdAnp4DisGPgnV9lChoBkdAb8xIPsiSq2gHTWoBaAhHQJ6gNdGAkLR1fZQoaAZHQGu1tG/etS1oB01hAWgIR0Ceo4UONHYpdX2UKGgGR0Bs2peb/ffoaAdNZQFoCEdAnqXI6CDmKnV9lChoBkdAbGX4+KTB7GgHTVYBaAhHQJ6n4+nqFAV1fZQoaAZHQG9JifQKKHhoB01gAWgIR0Ceq0XYDklvdX2UKGgGR0Bwx1AY51eTaAdNfQFoCEdAnq2brHEMs3V9lChoBkdAb2EWxhUip2gHTUwBaAhHQJ6vv6BRQ791fZQoaAZHQHAWlbqyGBZoB001AWgIR0CesuhtLteEdX2UKGgGR0BF/ABtDUmVaAdNJQFoCEdAnrTGj0th/nV9lChoBkdAcFPoCuEEkmgHTTwBaAhHQJ62qMUAT7F1fZQoaAZHQHBKno5ggHNoB01kAWgIR0CeujrylN1ydX2UKGgGR0BwH/JxNqQBaAdNZAFoCEdAnrz2HxjJ+3V9lChoBkdAb0EEkjX4CmgHTZkBaAhHQJ7APb/Ot4l1fZQoaAZHQHBVdCJGe+VoB01mAWgIR0CexFiG34KydX2UKGgGR0Btt3xOLzf8aAdNXQFoCEdAnsZ8Kw6hg3V9lChoBkdAbFFSeAd4mmgHTVYBaAhHQJ7IlWKdhAp1fZQoaAZHQG/fVB+nZTRoB02QAWgIR0CezDrnDBM0dX2UKGgGR0Bt8Ss0YTCcaAdNTAFoCEdAns5P8VHnU3V9lChoBkdAcfnBZpztC2gHTZkBaAhHQJ7Qu2/i5ut1fZQoaAZHQGt8JgCwKShoB01EAWgIR0Ce0/49X9zfdX2UKGgGR0BwCK+evpyIaAdNTwFoCEdAntYQ57w8XHV9lChoBkdAcLQ3kPtlZ2gHTVIBaAhHQJ7YJLoOhCd1ZS4="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 3908,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 1,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:00bacd11720a51ed678d6155af600f4020a04d50bc0887e198e39810eda3f1bf
3
+ size 88362
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:66b7c3acdb4e0f6ecdc4a866bc2ef59cdbb7ed1adccc2e6696be29b1d88bc6cf
3
+ size 43762
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.3.0+cu121
5
+ - GPU Enabled: True
6
+ - Numpy: 1.25.2
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (171 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 261.079359547729, "std_reward": 23.94129314280018, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-07-05T14:12:33.155298"}