sadafwalliyani
commited on
Commit
•
e893712
1
Parent(s):
86037ef
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI
|
2 |
+
from typing import List
|
3 |
+
|
4 |
+
from pydantic import BaseModel
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import transformers
|
8 |
+
|
9 |
+
app = FastAPI()
|
10 |
+
|
11 |
+
class HebrewText(BaseModel):
|
12 |
+
text: List[str]
|
13 |
+
|
14 |
+
@app.post("/diacritize/")
|
15 |
+
async def diacritize_hebrew(hebrew_text: HebrewText):
|
16 |
+
model_name = "sadafwalliyani/D_Nikud_model"
|
17 |
+
tokenizer = transformers.AutoTokenizer.from_pretrained(model_name)
|
18 |
+
model = transformers.AutoModel.from_pretrained(model_name)
|
19 |
+
|
20 |
+
input_ids = torch.tensor(tokenizer.encode(hebrew_text.text, return_tensors="pt")).to(model.device)
|
21 |
+
|
22 |
+
# Generate a response using the model's generate function
|
23 |
+
response = model.generate(
|
24 |
+
input_ids,
|
25 |
+
max_length=100,
|
26 |
+
num_beams=5,
|
27 |
+
early_stopping=True,
|
28 |
+
return_dict_in_generate=True,
|
29 |
+
output_scores=True,
|
30 |
+
output_hidden_states=False,
|
31 |
+
return_attention_mask=True,
|
32 |
+
use_cache=True,
|
33 |
+
)
|
34 |
+
|
35 |
+
# Decode the output
|
36 |
+
output_text = tokenizer.decode(response.sequences[0])
|
37 |
+
|
38 |
+
return {"text": output_text}
|