--- tags: - pytorch_model_hub_mixin - model_hub_mixin datasets: - scikit-learn/iris metrics: - accuracy library_name: pytorch pipeline_tag: tabular-classification --- # mlp-iris A multi-layer perceptron (MLP) trained on the Iris dataset. It takes four inputs: 'SepalLengthCm', 'SepalWidthCm', 'PetalLengthCm' and 'PetalWidthCm'. It predicts whether the species is 'Iris-setosa' / 'Iris-versicolor' / 'Iris-virginica'. It is a PyTorch adaptation of the scikit-learn model in Chapter 10 of Aurelien Geron's book 'Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow'. Find the scikit-learn model here: https://github.com/ageron/handson-ml3/blob/main/10_neural_nets_with_keras.ipynb Code: https://github.com/sambitmukherjee/handson-ml3-pytorch/blob/main/chapter10/mlp_iris.ipynb Experiment tracking: https://wandb.ai/sadhaklal/mlp-iris ## Usage ``` !pip install -q datasets from datasets import load_dataset iris = load_dataset("scikit-learn/iris") iris.set_format("pandas") iris_df = iris['train'][:] label2id = {'Iris-setosa': 0, 'Iris-versicolor': 1, 'Iris-virginica': 2} iris_df['Species'] = [label2id[species] for species in iris_df['Species']] X = iris_df[['SepalLengthCm', 'SepalWidthCm', 'PetalLengthCm', 'PetalWidthCm']].values y = iris_df['Species'].values from sklearn.model_selection import train_test_split X_train_full, X_test, y_train_full, y_test = train_test_split(X, y, test_size=0.1, stratify=y, random_state=42) X_train, X_valid, y_train, y_valid = train_test_split(X_train_full, y_train_full, test_size=0.1, stratify=y_train_full, random_state=42) X_means, X_stds = X_train.mean(axis=0), X_train.std(axis=0) import torch import torch.nn as nn from huggingface_hub import PyTorchModelHubMixin device = torch.device("cpu") class MLP(nn.Module, PyTorchModelHubMixin): def __init__(self): super().__init__() self.fc1 = nn.Linear(4, 5) self.fc2 = nn.Linear(5, 3) def forward(self, x): act = torch.relu(self.fc1(x)) return self.fc2(act) model = MLP.from_pretrained("sadhaklal/mlp-iris") model.to(device) X_new = X_test[:2] # Contains data on 2 new flowers from the test set. X_new = ((X_new - X_means) / X_stds) # Normalize. X_new = torch.tensor(X_new, dtype=torch.float32) model.eval() X_new = X_new.to(device) with torch.no_grad(): logits = model(X_new) probas = torch.softmax(logits, dim=-1) confidences, preds = probas.max(dim=-1) print(f"Predicted classes: {preds}") print(f"Predicted confidences: {confidences}") ``` ## Metric Accuracy on the test set: 0.9333 --- This model has been pushed to the Hub using the [PyTorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration.