--- language: - en license: mit tags: - chemistry - SMILES - product datasets: - ORD metrics: - accuracy --- # Model Card for ReactionT5v2-forward This is a ReactionT5 pre-trained to predict the products of reactions. You can use the demo [here](https://huggingface.co/spaces/sagawa/ReactionT5_task_forward). This is a ReactionT5 pre-trained to predict the products of reactions and fine-tuned on USPOT_50k's train split. Base model before fine-tuning is [here](https://huggingface.co/sagawa/ReactionT5v2-forward). ### Model Sources - **Repository:** https://github.com/sagawatatsuya/ReactionT5v2 - **Paper:** https://arxiv.org/abs/2311.06708 - **Demo:** https://huggingface.co/spaces/sagawa/ReactionT5_task_forward ## Uses You can use this model for forward reaction prediction or fine-tune this model with your dataset. ## How to Get Started with the Model Use the code below to get started with the model. ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("sagawa/ReactionT5v2-forward", return_tensors="pt") model = AutoModelForSeq2SeqLM.from_pretrained("sagawa/ReactionT5v2-forward") inp = tokenizer('REACTANT:COC(=O)C1=CCCN(C)C1.O.[Al+3].[H-].[Li+].[Na+].[OH-]REAGENT:C1CCOC1', return_tensors='pt') output = model.generate(**inp, num_beams=1, num_return_sequences=1, return_dict_in_generate=True, output_scores=True) output = tokenizer.decode(output['sequences'][0], skip_special_tokens=True).replace(' ', '').rstrip('.') output # 'CN1CCC=C(CO)C1' ``` ## Training Details ### Training Procedure We used the [USPTO_MIT dataset](https://yzhang.hpc.nyu.edu/T5Chem/index.html) for model finetuning. The command used for training is the following. For more information, please refer to the paper and GitHub repository. ```python cd task_forward python finetune.py \ --output_dir='t5' \ --epochs=50 \ --lr=2e-5 \ --batch_size=32 \ --input_max_len=200 \ --target_max_len=150 \ --evaluation_strategy='epoch' \ --save_strategy='epoch' \ --logging_strategy='epoch' \ --save_total_limit=10 \ --train_data_path='../data/USPTO_MIT/MIT_separated/train.csv' \ --valid_data_path='../data/USPTO_MIT/MIT_separated/val.csv' \ --disable_tqdm \ --model_name_or_path='sagawa/ReactionT5v2-forward' ``` ### Results | Model | Training set | Test set | Top-1 [% acc.] | Top-2 [% acc.] | Top-3 [% acc.] | Top-5 [% acc.] | |----------------------|---------------------------|----------|----------------|----------------|----------------|----------------| | Sequence-to-sequence | USPTO_MIT | USPTO_MIT | 80.3 | 84.7 | 86.2 | 87.5 | | WLDN | USPTO_MIT | USPTO_MIT | 80.6 (85.6) | 90.5 | 92.8 | 93.4 | | Molecular Transformer| USPTO_MIT | USPTO_MIT | 88.8 | 92.6 | – | 94.4 | | T5Chem | USPTO_MIT | USPTO_MIT | 90.4 | 94.2 | – | 96.4 | | CompoundT5 | USPTO_MIT | USPTO_MIT | 86.6 | 89.5 | 90.4 | 91.2 | | [ReactionT5](https://huggingface.co/sagawa/ReactionT5v2-forward) | - | USPTO_MIT | 92.8 | 95.6 | 96.4 | 97.1 | | [ReactionT5 (This model)](https://huggingface.co/sagawa/ReactionT5v2-forward-USPTO_MIT) | USPTO_MIT | USPTO_MIT | 97.5 | 98.6 | 98.8 | 99.0 | Performance comparison of Compound T5, ReactionT5, and other models in product prediction. ## Citation arxiv link: https://arxiv.org/abs/2311.06708 ``` @misc{sagawa2023reactiont5, title={ReactionT5: a large-scale pre-trained model towards application of limited reaction data}, author={Tatsuya Sagawa and Ryosuke Kojima}, year={2023}, eprint={2311.06708}, archivePrefix={arXiv}, primaryClass={physics.chem-ph} } ```