saifhmb commited on
Commit
d072898
1 Parent(s): 2781e82

pushing model to the Hugging Face Hub

Browse files
Files changed (4) hide show
  1. README.md +101 -95
  2. config.json +51 -81
  3. confusion_matrix.png +0 -0
  4. skops-uv7zld8n.pkl +3 -0
README.md CHANGED
@@ -5,137 +5,143 @@ tags:
5
  - skops
6
  - tabular-classification
7
  model_format: pickle
8
- model_file: skops-_rlm9nbx.pkl
9
  widget:
10
  - structuredData:
11
- x0:
12
- - 1.0086665077175379
13
- - 1.0086665077175379
14
- - -0.9914079553041198
15
- x1:
16
- - -1.0086665077175376
17
- - -1.0086665077175376
18
- - 0.99140795530412
19
- x10:
20
- - -0.22650043789522045
21
- - 1.0087085512107812
22
- - -1.1535683034040811
23
- x11:
24
- - -0.3931869525722032
25
- - -1.2502276872280191
26
- - -0.3931869525722032
27
- x12:
28
- - -0.22475360373860484
29
- - -1.2736037545187613
30
- - -1.2736037545187613
31
- x13:
32
- - -0.36644465957257716
33
- - -0.36644465957257716
34
- - -0.36644465957257716
35
- x14:
36
- - -0.43989052441881077
37
- - -1.6043722933752058
38
- - -0.43989052441881077
39
- x2:
40
- - -0.5244627009562925
41
- - -0.5244627009562925
42
- - -0.5244627009562925
43
- x3:
44
- - -1.0038424733297755
45
- - -1.0038424733297755
46
- - 0.9961722347560998
47
- x4:
48
- - 1.594238352724291
49
- - 1.594238352724291
50
- - -0.6272587773911873
51
- x5:
52
- - -0.9810049179827242
53
- - 1.0193628815402107
54
- - 1.0193628815402107
55
- x6:
56
- - 0.981004917982724
57
- - -1.019362881540211
58
- - -1.019362881540211
59
- x7:
60
- - 1.901326970246757
61
- - -0.525948464229825
62
- - -0.525948464229825
63
- x8:
64
- - -1.9013269702467568
65
- - 0.5259484642298251
66
- - 0.5259484642298251
67
- x9:
68
- - -0.7015627248979232
69
- - 0.8218167103592607
70
- - -1.3109144990007968
71
- datasets:
72
- - saifhmb/CreditCardRisk
73
  ---
74
 
75
  # Model description
76
 
77
- This is a logistic regression model trained on customers' credit card risk data in a bank using sklearn library. The model predicts whether a customer is worth issuing a credit card or not. The full dataset can be viewed at the following link: https://huggingface.co/datasets/saifhmb/CreditCardRisk
 
 
78
 
 
79
 
80
  ## Training Procedure
81
- The data preprocessing steps applied include the following:
82
- - Dropping high cardinality features, specifically ID
83
- - Transforming and Encoding categorical features namely: GENDER, MARITAL, HOWPAID, MORTGAGE and the target variable, RISK
84
- - Splitting the dataset into training/test set using 85/15 split ratio
85
- - Applying feature scaling on all features
86
 
87
  ### Hyperparameters
88
 
89
  <details>
90
  <summary> Click to expand </summary>
91
 
92
- | Hyperparameter | Value |
93
- |-------------------|---------|
94
- | C | 1.0 |
95
- | class_weight | |
96
- | dual | False |
97
- | fit_intercept | True |
98
- | intercept_scaling | 1 |
99
- | l1_ratio | |
100
- | max_iter | 100 |
101
- | multi_class | auto |
102
- | n_jobs | |
103
- | penalty | l2 |
104
- | random_state | |
105
- | solver | lbfgs |
106
- | tol | 0.0001 |
107
- | verbose | 0 |
108
- | warm_start | False |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
109
 
110
  </details>
111
 
112
  ### Model Plot
113
 
114
- <style>#sk-container-id-4 {color: black;background-color: white;}#sk-container-id-4 pre{padding: 0;}#sk-container-id-4 div.sk-toggleable {background-color: white;}#sk-container-id-4 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-4 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-4 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-4 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-4 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-4 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-4 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-4 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-container-id-4 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-4 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-4 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-4 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-4 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-4 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-4 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-4 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-4 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-4 div.sk-item {position: relative;z-index: 1;}#sk-container-id-4 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-4 div.sk-item::before, #sk-container-id-4 div.sk-parallel-item::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-4 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-4 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-4 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-4 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-4 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-4 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-4 div.sk-label-container {text-align: center;}#sk-container-id-4 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-4 div.sk-text-repr-fallback {display: none;}</style><div id="sk-container-id-4" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>LogisticRegression()</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-4" type="checkbox" checked><label for="sk-estimator-id-4" class="sk-toggleable__label sk-toggleable__label-arrow">LogisticRegression</label><div class="sk-toggleable__content"><pre>LogisticRegression()</pre></div></div></div></div></div>
115
 
116
  ## Evaluation Results
117
- - The target variable, RISK is multiclass. In sklearn, precision and recall functions have a parameter called, average. This parameter is required for a multiclass/multilabel target. average = 'micro' was used to calculate the precision and recall metrics globally by counting the total true positives, false negatives and false positives
118
 
119
- | Metric | Value |
120
  |-----------|----------|
121
- | accuracy | 0.7 |
122
- | precision | 0.7 |
123
- | recall | 0.7 |
124
 
125
  ### Confusion Matrix
126
 
127
  ![Confusion Matrix](confusion_matrix.png)
128
 
 
 
 
129
 
130
  # Model Card Authors
131
 
132
- This model card is written by following authors: Seifullah Bello
133
 
 
134
 
135
  # Model Card Contact
136
 
137
  You can contact the model card authors through following channels:
138
139
 
140
  # Citation
141
 
@@ -144,4 +150,4 @@ Below you can find information related to citation.
144
  **BibTeX:**
145
  ```
146
  [More Information Needed]
147
- ```
 
5
  - skops
6
  - tabular-classification
7
  model_format: pickle
8
+ model_file: skops-uv7zld8n.pkl
9
  widget:
10
  - structuredData:
11
+ AGE:
12
+ - 32
13
+ - 45
14
+ - 25
15
+ GENDER:
16
+ - m
17
+ - f
18
+ - f
19
+ HOWPAID:
20
+ - 'weekly '
21
+ - 'weekly '
22
+ - 'weekly '
23
+ INCOME:
24
+ - 21772
25
+ - 27553
26
+ - 23477
27
+ LOANS:
28
+ - 1
29
+ - 2
30
+ - 1
31
+ MARITAL:
32
+ - 'married '
33
+ - divsepwid
34
+ - 'single '
35
+ MORTGAGE:
36
+ - y
37
+ - y
38
+ - n
39
+ NUMCARDS:
40
+ - 2
41
+ - 6
42
+ - 1
43
+ NUMKIDS:
44
+ - 1
45
+ - 4
46
+ - 1
47
+ STORECAR:
48
+ - 3
49
+ - 5
50
+ - 2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51
  ---
52
 
53
  # Model description
54
 
55
+ [More Information Needed]
56
+
57
+ ## Intended uses & limitations
58
 
59
+ [More Information Needed]
60
 
61
  ## Training Procedure
62
+
63
+ [More Information Needed]
 
 
 
64
 
65
  ### Hyperparameters
66
 
67
  <details>
68
  <summary> Click to expand </summary>
69
 
70
+ | Hyperparameter | Value |
71
+ |-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
72
+ | memory | |
73
+ | steps | [('preprocessor', ColumnTransformer(remainder='passthrough',<br /> transformers=[('cat',<br /> Pipeline(steps=[('onehot',<br /> OneHotEncoder(handle_unknown='ignore'))]),<br /> ['GENDER', 'MARITAL', 'HOWPAID', 'MORTGAGE'])])), ('classifier', LogisticRegression())] |
74
+ | verbose | False |
75
+ | preprocessor | ColumnTransformer(remainder='passthrough',<br /> transformers=[('cat',<br /> Pipeline(steps=[('onehot',<br /> OneHotEncoder(handle_unknown='ignore'))]),<br /> ['GENDER', 'MARITAL', 'HOWPAID', 'MORTGAGE'])]) |
76
+ | classifier | LogisticRegression() |
77
+ | preprocessor__n_jobs | |
78
+ | preprocessor__remainder | passthrough |
79
+ | preprocessor__sparse_threshold | 0.3 |
80
+ | preprocessor__transformer_weights | |
81
+ | preprocessor__transformers | [('cat', Pipeline(steps=[('onehot', OneHotEncoder(handle_unknown='ignore'))]), ['GENDER', 'MARITAL', 'HOWPAID', 'MORTGAGE'])] |
82
+ | preprocessor__verbose | False |
83
+ | preprocessor__verbose_feature_names_out | True |
84
+ | preprocessor__cat | Pipeline(steps=[('onehot', OneHotEncoder(handle_unknown='ignore'))]) |
85
+ | preprocessor__cat__memory | |
86
+ | preprocessor__cat__steps | [('onehot', OneHotEncoder(handle_unknown='ignore'))] |
87
+ | preprocessor__cat__verbose | False |
88
+ | preprocessor__cat__onehot | OneHotEncoder(handle_unknown='ignore') |
89
+ | preprocessor__cat__onehot__categories | auto |
90
+ | preprocessor__cat__onehot__drop | |
91
+ | preprocessor__cat__onehot__dtype | <class 'numpy.float64'> |
92
+ | preprocessor__cat__onehot__handle_unknown | ignore |
93
+ | preprocessor__cat__onehot__max_categories | |
94
+ | preprocessor__cat__onehot__min_frequency | |
95
+ | preprocessor__cat__onehot__sparse | deprecated |
96
+ | preprocessor__cat__onehot__sparse_output | True |
97
+ | classifier__C | 1.0 |
98
+ | classifier__class_weight | |
99
+ | classifier__dual | False |
100
+ | classifier__fit_intercept | True |
101
+ | classifier__intercept_scaling | 1 |
102
+ | classifier__l1_ratio | |
103
+ | classifier__max_iter | 100 |
104
+ | classifier__multi_class | auto |
105
+ | classifier__n_jobs | |
106
+ | classifier__penalty | l2 |
107
+ | classifier__random_state | |
108
+ | classifier__solver | lbfgs |
109
+ | classifier__tol | 0.0001 |
110
+ | classifier__verbose | 0 |
111
+ | classifier__warm_start | False |
112
 
113
  </details>
114
 
115
  ### Model Plot
116
 
117
+ <style>#sk-container-id-16 {color: black;background-color: white;}#sk-container-id-16 pre{padding: 0;}#sk-container-id-16 div.sk-toggleable {background-color: white;}#sk-container-id-16 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-16 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-16 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-16 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-16 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-16 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-16 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-16 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-container-id-16 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-16 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-16 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-16 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-16 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-16 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-16 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-16 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-16 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-16 div.sk-item {position: relative;z-index: 1;}#sk-container-id-16 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-16 div.sk-item::before, #sk-container-id-16 div.sk-parallel-item::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-16 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-16 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-16 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-16 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-16 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-16 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-16 div.sk-label-container {text-align: center;}#sk-container-id-16 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-16 div.sk-text-repr-fallback {display: none;}</style><div id="sk-container-id-16" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>Pipeline(steps=[(&#x27;preprocessor&#x27;,ColumnTransformer(remainder=&#x27;passthrough&#x27;,transformers=[(&#x27;cat&#x27;,Pipeline(steps=[(&#x27;onehot&#x27;,OneHotEncoder(handle_unknown=&#x27;ignore&#x27;))]),[&#x27;GENDER&#x27;, &#x27;MARITAL&#x27;,&#x27;HOWPAID&#x27;, &#x27;MORTGAGE&#x27;])])),(&#x27;classifier&#x27;, LogisticRegression())])</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-106" type="checkbox" ><label for="sk-estimator-id-106" class="sk-toggleable__label sk-toggleable__label-arrow">Pipeline</label><div class="sk-toggleable__content"><pre>Pipeline(steps=[(&#x27;preprocessor&#x27;,ColumnTransformer(remainder=&#x27;passthrough&#x27;,transformers=[(&#x27;cat&#x27;,Pipeline(steps=[(&#x27;onehot&#x27;,OneHotEncoder(handle_unknown=&#x27;ignore&#x27;))]),[&#x27;GENDER&#x27;, &#x27;MARITAL&#x27;,&#x27;HOWPAID&#x27;, &#x27;MORTGAGE&#x27;])])),(&#x27;classifier&#x27;, LogisticRegression())])</pre></div></div></div><div class="sk-serial"><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-107" type="checkbox" ><label for="sk-estimator-id-107" class="sk-toggleable__label sk-toggleable__label-arrow">preprocessor: ColumnTransformer</label><div class="sk-toggleable__content"><pre>ColumnTransformer(remainder=&#x27;passthrough&#x27;,transformers=[(&#x27;cat&#x27;,Pipeline(steps=[(&#x27;onehot&#x27;,OneHotEncoder(handle_unknown=&#x27;ignore&#x27;))]),[&#x27;GENDER&#x27;, &#x27;MARITAL&#x27;, &#x27;HOWPAID&#x27;, &#x27;MORTGAGE&#x27;])])</pre></div></div></div><div class="sk-parallel"><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-108" type="checkbox" ><label for="sk-estimator-id-108" class="sk-toggleable__label sk-toggleable__label-arrow">cat</label><div class="sk-toggleable__content"><pre>[&#x27;GENDER&#x27;, &#x27;MARITAL&#x27;, &#x27;HOWPAID&#x27;, &#x27;MORTGAGE&#x27;]</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-109" type="checkbox" ><label for="sk-estimator-id-109" class="sk-toggleable__label sk-toggleable__label-arrow">OneHotEncoder</label><div class="sk-toggleable__content"><pre>OneHotEncoder(handle_unknown=&#x27;ignore&#x27;)</pre></div></div></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-110" type="checkbox" ><label for="sk-estimator-id-110" class="sk-toggleable__label sk-toggleable__label-arrow">remainder</label><div class="sk-toggleable__content"><pre>[&#x27;AGE&#x27;, &#x27;INCOME&#x27;, &#x27;NUMKIDS&#x27;, &#x27;NUMCARDS&#x27;, &#x27;STORECAR&#x27;, &#x27;LOANS&#x27;]</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-111" type="checkbox" ><label for="sk-estimator-id-111" class="sk-toggleable__label sk-toggleable__label-arrow">passthrough</label><div class="sk-toggleable__content"><pre>passthrough</pre></div></div></div></div></div></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-112" type="checkbox" ><label for="sk-estimator-id-112" class="sk-toggleable__label sk-toggleable__label-arrow">LogisticRegression</label><div class="sk-toggleable__content"><pre>LogisticRegression()</pre></div></div></div></div></div></div></div>
118
 
119
  ## Evaluation Results
 
120
 
121
+ | Metric | Value |
122
  |-----------|----------|
123
+ | accuracy | 0.663957 |
124
+ | precision | 0.663957 |
125
+ | recall | 0.663957 |
126
 
127
  ### Confusion Matrix
128
 
129
  ![Confusion Matrix](confusion_matrix.png)
130
 
131
+ # How to Get Started with the Model
132
+
133
+ [More Information Needed]
134
 
135
  # Model Card Authors
136
 
137
+ This model card is written by following authors:
138
 
139
+ [More Information Needed]
140
 
141
  # Model Card Contact
142
 
143
  You can contact the model card authors through following channels:
144
+ [More Information Needed]
145
 
146
  # Citation
147
 
 
150
  **BibTeX:**
151
  ```
152
  [More Information Needed]
153
+ ```
config.json CHANGED
@@ -1,104 +1,74 @@
1
  {
2
  "sklearn": {
3
  "columns": [
4
- "x0",
5
- "x1",
6
- "x2",
7
- "x3",
8
- "x4",
9
- "x5",
10
- "x6",
11
- "x7",
12
- "x8",
13
- "x9",
14
- "x10",
15
- "x11",
16
- "x12",
17
- "x13",
18
- "x14"
19
  ],
20
  "environment": [
21
  "scikit-learn=1.2.2"
22
  ],
23
  "example_input": {
24
- "x0": [
25
- 1.0086665077175379,
26
- 1.0086665077175379,
27
- -0.9914079553041198
28
  ],
29
- "x1": [
30
- -1.0086665077175376,
31
- -1.0086665077175376,
32
- 0.99140795530412
33
  ],
34
- "x10": [
35
- -0.22650043789522045,
36
- 1.0087085512107812,
37
- -1.1535683034040811
38
  ],
39
- "x11": [
40
- -0.3931869525722032,
41
- -1.2502276872280191,
42
- -0.3931869525722032
43
  ],
44
- "x12": [
45
- -0.22475360373860484,
46
- -1.2736037545187613,
47
- -1.2736037545187613
48
  ],
49
- "x13": [
50
- -0.36644465957257716,
51
- -0.36644465957257716,
52
- -0.36644465957257716
53
  ],
54
- "x14": [
55
- -0.43989052441881077,
56
- -1.6043722933752058,
57
- -0.43989052441881077
58
  ],
59
- "x2": [
60
- -0.5244627009562925,
61
- -0.5244627009562925,
62
- -0.5244627009562925
63
  ],
64
- "x3": [
65
- -1.0038424733297755,
66
- -1.0038424733297755,
67
- 0.9961722347560998
68
  ],
69
- "x4": [
70
- 1.594238352724291,
71
- 1.594238352724291,
72
- -0.6272587773911873
73
- ],
74
- "x5": [
75
- -0.9810049179827242,
76
- 1.0193628815402107,
77
- 1.0193628815402107
78
- ],
79
- "x6": [
80
- 0.981004917982724,
81
- -1.019362881540211,
82
- -1.019362881540211
83
- ],
84
- "x7": [
85
- 1.901326970246757,
86
- -0.525948464229825,
87
- -0.525948464229825
88
- ],
89
- "x8": [
90
- -1.9013269702467568,
91
- 0.5259484642298251,
92
- 0.5259484642298251
93
- ],
94
- "x9": [
95
- -0.7015627248979232,
96
- 0.8218167103592607,
97
- -1.3109144990007968
98
  ]
99
  },
100
  "model": {
101
- "file": "skops-1j3gdp7x.pkl"
102
  },
103
  "model_format": "pickle",
104
  "task": "tabular-classification",
 
1
  {
2
  "sklearn": {
3
  "columns": [
4
+ "AGE",
5
+ "INCOME",
6
+ "GENDER",
7
+ "MARITAL",
8
+ "NUMKIDS",
9
+ "NUMCARDS",
10
+ "HOWPAID",
11
+ "MORTGAGE",
12
+ "STORECAR",
13
+ "LOANS"
 
 
 
 
 
14
  ],
15
  "environment": [
16
  "scikit-learn=1.2.2"
17
  ],
18
  "example_input": {
19
+ "AGE": [
20
+ 32,
21
+ 45,
22
+ 25
23
  ],
24
+ "GENDER": [
25
+ "m",
26
+ "f",
27
+ "f"
28
  ],
29
+ "HOWPAID": [
30
+ "weekly ",
31
+ "weekly ",
32
+ "weekly "
33
  ],
34
+ "INCOME": [
35
+ 21772,
36
+ 27553,
37
+ 23477
38
  ],
39
+ "LOANS": [
40
+ 1,
41
+ 2,
42
+ 1
43
  ],
44
+ "MARITAL": [
45
+ "married ",
46
+ "divsepwid",
47
+ "single "
48
  ],
49
+ "MORTGAGE": [
50
+ "y",
51
+ "y",
52
+ "n"
53
  ],
54
+ "NUMCARDS": [
55
+ 2,
56
+ 6,
57
+ 1
58
  ],
59
+ "NUMKIDS": [
60
+ 1,
61
+ 4,
62
+ 1
63
  ],
64
+ "STORECAR": [
65
+ 3,
66
+ 5,
67
+ 2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68
  ]
69
  },
70
  "model": {
71
+ "file": "skops-uv7zld8n.pkl"
72
  },
73
  "model_format": "pickle",
74
  "task": "tabular-classification",
confusion_matrix.png CHANGED
skops-uv7zld8n.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0180e131f8a990517a02766e81afd973ae6a8159a2b074a9c75ebbc5f9dd8119
3
+ size 2947