First training of AntBullet
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +106 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1834.49 +/- 161.77
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cbd06146ef560d43acf84ec189ab33591b08f606a25c4f552faf5f1c65793fe5
|
3 |
+
size 129260
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f984bd66550>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f984bd665e0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f984bd66670>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f984bd66700>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f984bd66790>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f984bd66820>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f984bd668b0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f984bd66940>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f984bd669d0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f984bd66a60>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f984bd66af0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f984bd66b80>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7f984bd61750>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
28
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
8
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True True True True True]",
|
58 |
+
"bounded_above": "[ True True True True True True True True]",
|
59 |
+
"_np_random": null
|
60 |
+
},
|
61 |
+
"n_envs": 4,
|
62 |
+
"num_timesteps": 2000000,
|
63 |
+
"_total_timesteps": 2000000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": null,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1673975949328426475,
|
68 |
+
"learning_rate": 0.00099,
|
69 |
+
"tensorboard_log": null,
|
70 |
+
"lr_schedule": {
|
71 |
+
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UDhcZ9/jKoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
73 |
+
},
|
74 |
+
"_last_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAADqzCT/JRXQ+iIcVP3xC0T4iani/uhGPvwQMUD4nkki/iwgeP/Gfg74budc+UiMOwG5c/r1v5FM/KD/PvUEeSj/KaOQ+5ZKOP57mHT+GmZe9eS2vPkZZHj+2DUE+wNAVQKoXg7/cIwk/mDjTv+bqg78WRFa+y6K5PhBPET+/zw88A4b9vyWkjz1quhI+f/l5vjma3jxwVpq/P6wHPw95Nj1jYbK/yB01wGLVm742l8u/P6JKvyK8vb9bXBs/w/e8PHr+Fb+fqDQ89QJmv/imd7wF9nk/3CMJP9MiGz/m6oO/dfGqPmmUw77jlPc+IaLXPNkCTL8QYRI/oVmCvW4lU79vAjM+CjhJQCWBhT9avSS/uH9rvyKKpT9eQAq+msBMPrsB9b4/0Hg/zDwcPwOtpbwMhJE9rKXWP/xhVr+Z9A4/BfZ5P9wjCT/TIhs/5uqDv2rAfL8jgjK+QDoNP2GAQr//3D0/8mPtvuwhMz89Shs/CNMXPoRwT76i47U9w0t/PpnFob9OCEC9G4HzvuxQgb9t4Cy/OR00vilsIT+WH/c+QWUJQOAgCMDe3VK/CKWuvwX2eT/cIwk/0yIbP+bqg7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
+
},
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADARwG1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACArVqMPQAAAACnAOu/AAAAAOBEeL0AAAAAF3DkPwAAAAA14+k9AAAAAGTh7z8AAAAA1F+COwAAAABdBfi/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAApqhHNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgNYpEr4AAAAAAAP7vwAAAADw4Ce9AAAAAAVI6D8AAAAAQzlMOwAAAACgduM/AAAAAMbrebwAAAAAcMrqvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKruqbUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDQDVq9AAAAAG2j7r8AAAAAiOkLPAAAAACw/PQ/AAAAAEC25b0AAAAAtePbPwAAAAC2Abu6AAAAAMKh3r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwI2U2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAmoxoPQAAAADImt+/AAAAACpnWj0AAAAAMfLYPwAAAADhm5o9AAAAAIU83T8AAAAAiz6evQAAAACzQwHAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJ/Ge8oQWeqMAWyUTegDjAF0lEdAp86NF+d9UnV9lChoBkdAniw01/DtPmgHTegDaAhHQKfVMdbxEv11fZQoaAZHQJu3gBU70WdoB03oA2gIR0Cn1XS+QEIPdX2UKGgGR0CZzAm0mdAgaAdN6ANoCEdAp9YOQZGayHV9lChoBkdAmlt1ct5D7mgHTegDaAhHQKfa7NTtLL91fZQoaAZHQJgjJh5PdmBoB03oA2gIR0Cn4Wvw3HaOdX2UKGgGR0CXK5tJnQIEaAdN6ANoCEdAp+GtX9zfanV9lChoBkdAmVFavq1PWWgHTegDaAhHQKfiQ8WbgCR1fZQoaAZHQJhg8j8k2P1oB03oA2gIR0Cn5wxgqmTDdX2UKGgGR0CcyxqVQhwEaAdN6ANoCEdAp+16j59E1HV9lChoBkdAnQ/o+Sr5qWgHTegDaAhHQKftuQbMott1fZQoaAZHQJbqqLm6oVFoB03oA2gIR0Cn7k8bJfY0dX2UKGgGR0CccMcJdB0IaAdN6ANoCEdAp/MoN9YwI3V9lChoBkdAm6QvaL4ve2gHTegDaAhHQKf5nlf7aZh1fZQoaAZHQJYHoxtYSxtoB03oA2gIR0Cn+d3AEdNndX2UKGgGR0CbV0hakhzOaAdN6ANoCEdAp/p2lANXo3V9lChoBkdAnAcepfhMrWgHTegDaAhHQKf/S+TNdJJ1fZQoaAZHQJ5CwqgAZKpoB03oA2gIR0CoBehPsRg7dX2UKGgGR0CZW1FEAo5QaAdN6ANoCEdAqAYlP1tfonV9lChoBkdAnBlzfm9xqGgHTegDaAhHQKgGvh2GIsR1fZQoaAZHQJvuZz90ihZoB03oA2gIR0CoC4jtPYWddX2UKGgGR0CZ+4n3ta6jaAdN6ANoCEdAqBIlcbBGhHV9lChoBkdAkvwph4MWoGgHTegDaAhHQKgSZdIGyHF1fZQoaAZHQJrN84LkS29oB03oA2gIR0CoEwAXuVopdX2UKGgGR0CauTuE25xzaAdN6ANoCEdAqBfAJRfnfXV9lChoBkdAmGJ+NxVAA2gHTegDaAhHQKgeZXgccVB1fZQoaAZHQJZ8rDIikftoB03oA2gIR0CoHqY2bXpXdX2UKGgGR0CXsMbyYoiLaAdN6ANoCEdAqB88QqZtvXV9lChoBkdAl82QyM1jzGgHTegDaAhHQKgkBcafjCJ1fZQoaAZHQJq//HMlkYpoB03oA2gIR0CoKpEHdGiIdX2UKGgGR0CbEEWLxZuAaAdN6ANoCEdAqCrRoh6jWXV9lChoBkdAmjaV4Pf8/GgHTegDaAhHQKgrbGPPszF1fZQoaAZHQJq5ylgtvn9oB03oA2gIR0CoMC0fxMFmdX2UKGgGR0CacJH9FWn1aAdN6ANoCEdAqDaPGOuJUHV9lChoBkdAmfOMm0E5hmgHTegDaAhHQKg20fkFOfx1fZQoaAZHQJkdLi1iONpoB03oA2gIR0CoN2Ox8lXzdX2UKGgGR0Ccn2eeFtbcaAdN6ANoCEdAqDxLbSJCSnV9lChoBkdAmWrsWfseGWgHTegDaAhHQKhC591loUV1fZQoaAZHQJm2zojfNzNoB03oA2gIR0CoQyqTKT0QdX2UKGgGR0CaACBSk0rLaAdN6ANoCEdAqEPFfb9IgHV9lChoBkdAnm3axC6YmmgHTegDaAhHQKhIl4ZdfLN1fZQoaAZHQJw4YE6kqMFoB03oA2gIR0CoTzhqj8DTdX2UKGgGR0CV9dnvlU6xaAdN6ANoCEdAqE95HLA573V9lChoBkdAm+YPqPfbbmgHTegDaAhHQKhQFnU2DQJ1fZQoaAZHQJp6GxD9fkZoB03oA2gIR0CoVv6BqbjMdX2UKGgGR0CYiSzBAOawaAdN6ANoCEdAqF7e5H3DenV9lChoBkdAn54oL1EmY2gHTegDaAhHQKhfHzySV4Z1fZQoaAZHQJuX8xesxPBoB03oA2gIR0CoX7ghStNjdX2UKGgGR0CaqaSamXPaaAdN6ANoCEdAqGSigoPTX3V9lChoBkdAnUzksBhhIGgHTegDaAhHQKhrI3vQWvd1fZQoaAZHQJyX0IWxhUloB03oA2gIR0Coa2FWn0kGdX2UKGgGR0Cc7/gKWszVaAdN6ANoCEdAqGv54W1twnV9lChoBkdAm3kQYLsru2gHTegDaAhHQKhwzBRhttR1fZQoaAZHQJw++pcX3xpoB03oA2gIR0Cod2Rs2vSudX2UKGgGR0CcjLZrHlwMaAdN6ANoCEdAqHekwlByCHV9lChoBkdAnAvSJ9AoomgHTegDaAhHQKh4QM4tHx11fZQoaAZHQJxSh36hxo9oB03oA2gIR0CofSw1R+BpdX2UKGgGR0CdxFVBUrCnaAdN6ANoCEdAqIOfW8RL9XV9lChoBkdAmw2/DpC8e2gHTegDaAhHQKiD3jSXt0F1fZQoaAZHQJqfVHd43WFoB03oA2gIR0CohHZFw1iwdX2UKGgGR0CfnYOfNA1OaAdN6ANoCEdAqIklQTEiuHV9lChoBkdAl4Y7ThHby2gHTegDaAhHQKiPcMz/IbR1fZQoaAZHQJk2OTot+ThoB03oA2gIR0Coj7N9x6v8dX2UKGgGR0CbmBFWGRFJaAdN6ANoCEdAqJBIR5C4SnV9lChoBkdAl2fLpaA4GWgHTegDaAhHQKiVGkzoEB91fZQoaAZHQJbRNyhi9ZloB03oA2gIR0Com5p8v24/dX2UKGgGR0CD5mWUKRdQaAdN6ANoCEdAqJvbncL0BnV9lChoBkdAmz5KKP4mC2gHTegDaAhHQKicdnr6ciJ1fZQoaAZHQJKTTIEKVptoB03oA2gIR0CooU4x+KCQdX2UKGgGR0CIiUwXZXdTaAdN6ANoCEdAqKfy8g6ltXV9lChoBkdAmGvfoV2zOWgHTegDaAhHQKioMDklu3t1fZQoaAZHQJqRC2JBPbhoB03oA2gIR0CoqMv1tfoidX2UKGgGR0CX6LZFocrBaAdN6ANoCEdAqK2nYUWVNnV9lChoBkdAmATvRRdhRmgHTegDaAhHQKi0FBSDRMN1fZQoaAZHQJsk2zqrzXloB03oA2gIR0CotE9xQzk7dX2UKGgGR0CZ3c+PikwfaAdN6ANoCEdAqLTftdAxBXV9lChoBkdAmDWwtWdVemgHTegDaAhHQKi55ubZvk11fZQoaAZHQJf5/bWVeKNoB03oA2gIR0CowIbaRISUdX2UKGgGR0CaMDoo/iYLaAdN6ANoCEdAqMDHdM0xd3V9lChoBkdAkYI8HbAUL2gHTegDaAhHQKjBYX3QD3d1fZQoaAZHQJzi7z4DcM5oB03oA2gIR0CoxkUIToMbdX2UKGgGR0CW0YvMr3CbaAdN6ANoCEdAqMzoQWepXXV9lChoBkdAnDmXfyf+TGgHTegDaAhHQKjNKgpz90l1fZQoaAZHQJ1JaE25xzdoB03oA2gIR0Cozc6LwWnCdX2UKGgGR0CQ6XLBsQ/YaAdN6ANoCEdAqNLPKyOaOXV9lChoBkdAlclwpSaVlmgHTegDaAhHQKjZWndfsu51fZQoaAZHQJy+k4Qz1sdoB03oA2gIR0Co2ZjjBEa3dX2UKGgGR0CYpwYPXkHVaAdN6ANoCEdAqNo5A4XGfnV9lChoBkdAm+gNR3u/lGgHTegDaAhHQKje7HjIaLp1fZQoaAZHQJqkoinpB5ZoB03oA2gIR0Co5XBlDneSdX2UKGgGR0CRtBYywfQsaAdN6ANoCEdAqOWt0vGp/HV9lChoBkdAnZLsaKk2xmgHTegDaAhHQKjmQattALR1fZQoaAZHQJtpiZ8a4tpoB03oA2gIR0Co6xr3j+72dX2UKGgGR0CDIrDQ7cO9aAdN6ANoCEdAqPHZ3qzJIXV9lChoBkdAkdCNwrDqGGgHTegDaAhHQKjyIOuJUHZ1fZQoaAZHQJxvk6BAfMhoB03oA2gIR0Co8sc+aBqcdX2UKGgGR0CYxtT72tdSaAdN6ANoCEdAqPemZ1FH8XV9lChoBkdAn9PvechC+mgHTegDaAhHQKj+RE9dNWV1fZQoaAZHQJ1LB3KSxJNoB03oA2gIR0Co/oO6mO2idX2UKGgGR0Cem0EvkBCEaAdN6ANoCEdAqP8endfsu3VlLg=="
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 62500,
|
99 |
+
"n_steps": 8,
|
100 |
+
"gamma": 0.99,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.0,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7e33e029200656df6da53e09af6d0e7f6c30b97e91b3d507826b2c5b24d38862
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e6dedf07d80c565d90da6ed600c351bc94595e45e36a5a3940e2498953a6158b
|
3 |
+
size 56958
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.0+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f984bd66550>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f984bd665e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f984bd66670>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f984bd66700>", "_build": "<function ActorCriticPolicy._build at 0x7f984bd66790>", "forward": "<function ActorCriticPolicy.forward at 0x7f984bd66820>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f984bd668b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f984bd66940>", "_predict": "<function ActorCriticPolicy._predict at 0x7f984bd669d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f984bd66a60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f984bd66af0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f984bd66b80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f984bd61750>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673975949328426475, "learning_rate": 0.00099, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UDhcZ9/jKoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAADqzCT/JRXQ+iIcVP3xC0T4iani/uhGPvwQMUD4nkki/iwgeP/Gfg74budc+UiMOwG5c/r1v5FM/KD/PvUEeSj/KaOQ+5ZKOP57mHT+GmZe9eS2vPkZZHj+2DUE+wNAVQKoXg7/cIwk/mDjTv+bqg78WRFa+y6K5PhBPET+/zw88A4b9vyWkjz1quhI+f/l5vjma3jxwVpq/P6wHPw95Nj1jYbK/yB01wGLVm742l8u/P6JKvyK8vb9bXBs/w/e8PHr+Fb+fqDQ89QJmv/imd7wF9nk/3CMJP9MiGz/m6oO/dfGqPmmUw77jlPc+IaLXPNkCTL8QYRI/oVmCvW4lU79vAjM+CjhJQCWBhT9avSS/uH9rvyKKpT9eQAq+msBMPrsB9b4/0Hg/zDwcPwOtpbwMhJE9rKXWP/xhVr+Z9A4/BfZ5P9wjCT/TIhs/5uqDv2rAfL8jgjK+QDoNP2GAQr//3D0/8mPtvuwhMz89Shs/CNMXPoRwT76i47U9w0t/PpnFob9OCEC9G4HzvuxQgb9t4Cy/OR00vilsIT+WH/c+QWUJQOAgCMDe3VK/CKWuvwX2eT/cIwk/0yIbP+bqg7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADARwG1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACArVqMPQAAAACnAOu/AAAAAOBEeL0AAAAAF3DkPwAAAAA14+k9AAAAAGTh7z8AAAAA1F+COwAAAABdBfi/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAApqhHNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgNYpEr4AAAAAAAP7vwAAAADw4Ce9AAAAAAVI6D8AAAAAQzlMOwAAAACgduM/AAAAAMbrebwAAAAAcMrqvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKruqbUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDQDVq9AAAAAG2j7r8AAAAAiOkLPAAAAACw/PQ/AAAAAEC25b0AAAAAtePbPwAAAAC2Abu6AAAAAMKh3r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwI2U2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAmoxoPQAAAADImt+/AAAAACpnWj0AAAAAMfLYPwAAAADhm5o9AAAAAIU83T8AAAAAiz6evQAAAACzQwHAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJ/Ge8oQWeqMAWyUTegDjAF0lEdAp86NF+d9UnV9lChoBkdAniw01/DtPmgHTegDaAhHQKfVMdbxEv11fZQoaAZHQJu3gBU70WdoB03oA2gIR0Cn1XS+QEIPdX2UKGgGR0CZzAm0mdAgaAdN6ANoCEdAp9YOQZGayHV9lChoBkdAmlt1ct5D7mgHTegDaAhHQKfa7NTtLL91fZQoaAZHQJgjJh5PdmBoB03oA2gIR0Cn4Wvw3HaOdX2UKGgGR0CXK5tJnQIEaAdN6ANoCEdAp+GtX9zfanV9lChoBkdAmVFavq1PWWgHTegDaAhHQKfiQ8WbgCR1fZQoaAZHQJhg8j8k2P1oB03oA2gIR0Cn5wxgqmTDdX2UKGgGR0CcyxqVQhwEaAdN6ANoCEdAp+16j59E1HV9lChoBkdAnQ/o+Sr5qWgHTegDaAhHQKftuQbMott1fZQoaAZHQJbqqLm6oVFoB03oA2gIR0Cn7k8bJfY0dX2UKGgGR0CccMcJdB0IaAdN6ANoCEdAp/MoN9YwI3V9lChoBkdAm6QvaL4ve2gHTegDaAhHQKf5nlf7aZh1fZQoaAZHQJYHoxtYSxtoB03oA2gIR0Cn+d3AEdNndX2UKGgGR0CbV0hakhzOaAdN6ANoCEdAp/p2lANXo3V9lChoBkdAnAcepfhMrWgHTegDaAhHQKf/S+TNdJJ1fZQoaAZHQJ5CwqgAZKpoB03oA2gIR0CoBehPsRg7dX2UKGgGR0CZW1FEAo5QaAdN6ANoCEdAqAYlP1tfonV9lChoBkdAnBlzfm9xqGgHTegDaAhHQKgGvh2GIsR1fZQoaAZHQJvuZz90ihZoB03oA2gIR0CoC4jtPYWddX2UKGgGR0CZ+4n3ta6jaAdN6ANoCEdAqBIlcbBGhHV9lChoBkdAkvwph4MWoGgHTegDaAhHQKgSZdIGyHF1fZQoaAZHQJrN84LkS29oB03oA2gIR0CoEwAXuVopdX2UKGgGR0CauTuE25xzaAdN6ANoCEdAqBfAJRfnfXV9lChoBkdAmGJ+NxVAA2gHTegDaAhHQKgeZXgccVB1fZQoaAZHQJZ8rDIikftoB03oA2gIR0CoHqY2bXpXdX2UKGgGR0CXsMbyYoiLaAdN6ANoCEdAqB88QqZtvXV9lChoBkdAl82QyM1jzGgHTegDaAhHQKgkBcafjCJ1fZQoaAZHQJq//HMlkYpoB03oA2gIR0CoKpEHdGiIdX2UKGgGR0CbEEWLxZuAaAdN6ANoCEdAqCrRoh6jWXV9lChoBkdAmjaV4Pf8/GgHTegDaAhHQKgrbGPPszF1fZQoaAZHQJq5ylgtvn9oB03oA2gIR0CoMC0fxMFmdX2UKGgGR0CacJH9FWn1aAdN6ANoCEdAqDaPGOuJUHV9lChoBkdAmfOMm0E5hmgHTegDaAhHQKg20fkFOfx1fZQoaAZHQJkdLi1iONpoB03oA2gIR0CoN2Ox8lXzdX2UKGgGR0Ccn2eeFtbcaAdN6ANoCEdAqDxLbSJCSnV9lChoBkdAmWrsWfseGWgHTegDaAhHQKhC591loUV1fZQoaAZHQJm2zojfNzNoB03oA2gIR0CoQyqTKT0QdX2UKGgGR0CaACBSk0rLaAdN6ANoCEdAqEPFfb9IgHV9lChoBkdAnm3axC6YmmgHTegDaAhHQKhIl4ZdfLN1fZQoaAZHQJw4YE6kqMFoB03oA2gIR0CoTzhqj8DTdX2UKGgGR0CV9dnvlU6xaAdN6ANoCEdAqE95HLA573V9lChoBkdAm+YPqPfbbmgHTegDaAhHQKhQFnU2DQJ1fZQoaAZHQJp6GxD9fkZoB03oA2gIR0CoVv6BqbjMdX2UKGgGR0CYiSzBAOawaAdN6ANoCEdAqF7e5H3DenV9lChoBkdAn54oL1EmY2gHTegDaAhHQKhfHzySV4Z1fZQoaAZHQJuX8xesxPBoB03oA2gIR0CoX7ghStNjdX2UKGgGR0CaqaSamXPaaAdN6ANoCEdAqGSigoPTX3V9lChoBkdAnUzksBhhIGgHTegDaAhHQKhrI3vQWvd1fZQoaAZHQJyX0IWxhUloB03oA2gIR0Coa2FWn0kGdX2UKGgGR0Cc7/gKWszVaAdN6ANoCEdAqGv54W1twnV9lChoBkdAm3kQYLsru2gHTegDaAhHQKhwzBRhttR1fZQoaAZHQJw++pcX3xpoB03oA2gIR0Cod2Rs2vSudX2UKGgGR0CcjLZrHlwMaAdN6ANoCEdAqHekwlByCHV9lChoBkdAnAvSJ9AoomgHTegDaAhHQKh4QM4tHx11fZQoaAZHQJxSh36hxo9oB03oA2gIR0CofSw1R+BpdX2UKGgGR0CdxFVBUrCnaAdN6ANoCEdAqIOfW8RL9XV9lChoBkdAmw2/DpC8e2gHTegDaAhHQKiD3jSXt0F1fZQoaAZHQJqfVHd43WFoB03oA2gIR0CohHZFw1iwdX2UKGgGR0CfnYOfNA1OaAdN6ANoCEdAqIklQTEiuHV9lChoBkdAl4Y7ThHby2gHTegDaAhHQKiPcMz/IbR1fZQoaAZHQJk2OTot+ThoB03oA2gIR0Coj7N9x6v8dX2UKGgGR0CbmBFWGRFJaAdN6ANoCEdAqJBIR5C4SnV9lChoBkdAl2fLpaA4GWgHTegDaAhHQKiVGkzoEB91fZQoaAZHQJbRNyhi9ZloB03oA2gIR0Com5p8v24/dX2UKGgGR0CD5mWUKRdQaAdN6ANoCEdAqJvbncL0BnV9lChoBkdAmz5KKP4mC2gHTegDaAhHQKicdnr6ciJ1fZQoaAZHQJKTTIEKVptoB03oA2gIR0CooU4x+KCQdX2UKGgGR0CIiUwXZXdTaAdN6ANoCEdAqKfy8g6ltXV9lChoBkdAmGvfoV2zOWgHTegDaAhHQKioMDklu3t1fZQoaAZHQJqRC2JBPbhoB03oA2gIR0CoqMv1tfoidX2UKGgGR0CX6LZFocrBaAdN6ANoCEdAqK2nYUWVNnV9lChoBkdAmATvRRdhRmgHTegDaAhHQKi0FBSDRMN1fZQoaAZHQJsk2zqrzXloB03oA2gIR0CotE9xQzk7dX2UKGgGR0CZ3c+PikwfaAdN6ANoCEdAqLTftdAxBXV9lChoBkdAmDWwtWdVemgHTegDaAhHQKi55ubZvk11fZQoaAZHQJf5/bWVeKNoB03oA2gIR0CowIbaRISUdX2UKGgGR0CaMDoo/iYLaAdN6ANoCEdAqMDHdM0xd3V9lChoBkdAkYI8HbAUL2gHTegDaAhHQKjBYX3QD3d1fZQoaAZHQJzi7z4DcM5oB03oA2gIR0CoxkUIToMbdX2UKGgGR0CW0YvMr3CbaAdN6ANoCEdAqMzoQWepXXV9lChoBkdAnDmXfyf+TGgHTegDaAhHQKjNKgpz90l1fZQoaAZHQJ1JaE25xzdoB03oA2gIR0Cozc6LwWnCdX2UKGgGR0CQ6XLBsQ/YaAdN6ANoCEdAqNLPKyOaOXV9lChoBkdAlclwpSaVlmgHTegDaAhHQKjZWndfsu51fZQoaAZHQJy+k4Qz1sdoB03oA2gIR0Co2ZjjBEa3dX2UKGgGR0CYpwYPXkHVaAdN6ANoCEdAqNo5A4XGfnV9lChoBkdAm+gNR3u/lGgHTegDaAhHQKje7HjIaLp1fZQoaAZHQJqkoinpB5ZoB03oA2gIR0Co5XBlDneSdX2UKGgGR0CRtBYywfQsaAdN6ANoCEdAqOWt0vGp/HV9lChoBkdAnZLsaKk2xmgHTegDaAhHQKjmQattALR1fZQoaAZHQJtpiZ8a4tpoB03oA2gIR0Co6xr3j+72dX2UKGgGR0CDIrDQ7cO9aAdN6ANoCEdAqPHZ3qzJIXV9lChoBkdAkdCNwrDqGGgHTegDaAhHQKjyIOuJUHZ1fZQoaAZHQJxvk6BAfMhoB03oA2gIR0Co8sc+aBqcdX2UKGgGR0CYxtT72tdSaAdN6ANoCEdAqPemZ1FH8XV9lChoBkdAn9PvechC+mgHTegDaAhHQKj+RE9dNWV1fZQoaAZHQJ1LB3KSxJNoB03oA2gIR0Co/oO6mO2idX2UKGgGR0Cem0EvkBCEaAdN6ANoCEdAqP8endfsu3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d80f62cf204c694eb20f83121ab3caa5f859d56df65b796eea4e8eae374f7916
|
3 |
+
size 1145333
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1834.4878995971462, "std_reward": 161.77344455657575, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-17T18:26:58.150643"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:be4b50ecf22826c4183d7cb50e23bca0e5879a267fde2b1bc6f0a433d491b4fd
|
3 |
+
size 2521
|