saikiranp commited on
Commit
eb25db1
1 Parent(s): 02f6b03

First training of AntBullet

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1834.49 +/- 161.77
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cbd06146ef560d43acf84ec189ab33591b08f606a25c4f552faf5f1c65793fe5
3
+ size 129260
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f984bd66550>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f984bd665e0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f984bd66670>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f984bd66700>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f984bd66790>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f984bd66820>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f984bd668b0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f984bd66940>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f984bd669d0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f984bd66a60>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f984bd66af0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f984bd66b80>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f984bd61750>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1673975949328426475,
68
+ "learning_rate": 0.00099,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UDhcZ9/jKoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAADqzCT/JRXQ+iIcVP3xC0T4iani/uhGPvwQMUD4nkki/iwgeP/Gfg74budc+UiMOwG5c/r1v5FM/KD/PvUEeSj/KaOQ+5ZKOP57mHT+GmZe9eS2vPkZZHj+2DUE+wNAVQKoXg7/cIwk/mDjTv+bqg78WRFa+y6K5PhBPET+/zw88A4b9vyWkjz1quhI+f/l5vjma3jxwVpq/P6wHPw95Nj1jYbK/yB01wGLVm742l8u/P6JKvyK8vb9bXBs/w/e8PHr+Fb+fqDQ89QJmv/imd7wF9nk/3CMJP9MiGz/m6oO/dfGqPmmUw77jlPc+IaLXPNkCTL8QYRI/oVmCvW4lU79vAjM+CjhJQCWBhT9avSS/uH9rvyKKpT9eQAq+msBMPrsB9b4/0Hg/zDwcPwOtpbwMhJE9rKXWP/xhVr+Z9A4/BfZ5P9wjCT/TIhs/5uqDv2rAfL8jgjK+QDoNP2GAQr//3D0/8mPtvuwhMz89Shs/CNMXPoRwT76i47U9w0t/PpnFob9OCEC9G4HzvuxQgb9t4Cy/OR00vilsIT+WH/c+QWUJQOAgCMDe3VK/CKWuvwX2eT/cIwk/0yIbP+bqg7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADARwG1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACArVqMPQAAAACnAOu/AAAAAOBEeL0AAAAAF3DkPwAAAAA14+k9AAAAAGTh7z8AAAAA1F+COwAAAABdBfi/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAApqhHNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgNYpEr4AAAAAAAP7vwAAAADw4Ce9AAAAAAVI6D8AAAAAQzlMOwAAAACgduM/AAAAAMbrebwAAAAAcMrqvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKruqbUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDQDVq9AAAAAG2j7r8AAAAAiOkLPAAAAACw/PQ/AAAAAEC25b0AAAAAtePbPwAAAAC2Abu6AAAAAMKh3r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwI2U2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAmoxoPQAAAADImt+/AAAAACpnWj0AAAAAMfLYPwAAAADhm5o9AAAAAIU83T8AAAAAiz6evQAAAACzQwHAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJ/Ge8oQWeqMAWyUTegDjAF0lEdAp86NF+d9UnV9lChoBkdAniw01/DtPmgHTegDaAhHQKfVMdbxEv11fZQoaAZHQJu3gBU70WdoB03oA2gIR0Cn1XS+QEIPdX2UKGgGR0CZzAm0mdAgaAdN6ANoCEdAp9YOQZGayHV9lChoBkdAmlt1ct5D7mgHTegDaAhHQKfa7NTtLL91fZQoaAZHQJgjJh5PdmBoB03oA2gIR0Cn4Wvw3HaOdX2UKGgGR0CXK5tJnQIEaAdN6ANoCEdAp+GtX9zfanV9lChoBkdAmVFavq1PWWgHTegDaAhHQKfiQ8WbgCR1fZQoaAZHQJhg8j8k2P1oB03oA2gIR0Cn5wxgqmTDdX2UKGgGR0CcyxqVQhwEaAdN6ANoCEdAp+16j59E1HV9lChoBkdAnQ/o+Sr5qWgHTegDaAhHQKftuQbMott1fZQoaAZHQJbqqLm6oVFoB03oA2gIR0Cn7k8bJfY0dX2UKGgGR0CccMcJdB0IaAdN6ANoCEdAp/MoN9YwI3V9lChoBkdAm6QvaL4ve2gHTegDaAhHQKf5nlf7aZh1fZQoaAZHQJYHoxtYSxtoB03oA2gIR0Cn+d3AEdNndX2UKGgGR0CbV0hakhzOaAdN6ANoCEdAp/p2lANXo3V9lChoBkdAnAcepfhMrWgHTegDaAhHQKf/S+TNdJJ1fZQoaAZHQJ5CwqgAZKpoB03oA2gIR0CoBehPsRg7dX2UKGgGR0CZW1FEAo5QaAdN6ANoCEdAqAYlP1tfonV9lChoBkdAnBlzfm9xqGgHTegDaAhHQKgGvh2GIsR1fZQoaAZHQJvuZz90ihZoB03oA2gIR0CoC4jtPYWddX2UKGgGR0CZ+4n3ta6jaAdN6ANoCEdAqBIlcbBGhHV9lChoBkdAkvwph4MWoGgHTegDaAhHQKgSZdIGyHF1fZQoaAZHQJrN84LkS29oB03oA2gIR0CoEwAXuVopdX2UKGgGR0CauTuE25xzaAdN6ANoCEdAqBfAJRfnfXV9lChoBkdAmGJ+NxVAA2gHTegDaAhHQKgeZXgccVB1fZQoaAZHQJZ8rDIikftoB03oA2gIR0CoHqY2bXpXdX2UKGgGR0CXsMbyYoiLaAdN6ANoCEdAqB88QqZtvXV9lChoBkdAl82QyM1jzGgHTegDaAhHQKgkBcafjCJ1fZQoaAZHQJq//HMlkYpoB03oA2gIR0CoKpEHdGiIdX2UKGgGR0CbEEWLxZuAaAdN6ANoCEdAqCrRoh6jWXV9lChoBkdAmjaV4Pf8/GgHTegDaAhHQKgrbGPPszF1fZQoaAZHQJq5ylgtvn9oB03oA2gIR0CoMC0fxMFmdX2UKGgGR0CacJH9FWn1aAdN6ANoCEdAqDaPGOuJUHV9lChoBkdAmfOMm0E5hmgHTegDaAhHQKg20fkFOfx1fZQoaAZHQJkdLi1iONpoB03oA2gIR0CoN2Ox8lXzdX2UKGgGR0Ccn2eeFtbcaAdN6ANoCEdAqDxLbSJCSnV9lChoBkdAmWrsWfseGWgHTegDaAhHQKhC591loUV1fZQoaAZHQJm2zojfNzNoB03oA2gIR0CoQyqTKT0QdX2UKGgGR0CaACBSk0rLaAdN6ANoCEdAqEPFfb9IgHV9lChoBkdAnm3axC6YmmgHTegDaAhHQKhIl4ZdfLN1fZQoaAZHQJw4YE6kqMFoB03oA2gIR0CoTzhqj8DTdX2UKGgGR0CV9dnvlU6xaAdN6ANoCEdAqE95HLA573V9lChoBkdAm+YPqPfbbmgHTegDaAhHQKhQFnU2DQJ1fZQoaAZHQJp6GxD9fkZoB03oA2gIR0CoVv6BqbjMdX2UKGgGR0CYiSzBAOawaAdN6ANoCEdAqF7e5H3DenV9lChoBkdAn54oL1EmY2gHTegDaAhHQKhfHzySV4Z1fZQoaAZHQJuX8xesxPBoB03oA2gIR0CoX7ghStNjdX2UKGgGR0CaqaSamXPaaAdN6ANoCEdAqGSigoPTX3V9lChoBkdAnUzksBhhIGgHTegDaAhHQKhrI3vQWvd1fZQoaAZHQJyX0IWxhUloB03oA2gIR0Coa2FWn0kGdX2UKGgGR0Cc7/gKWszVaAdN6ANoCEdAqGv54W1twnV9lChoBkdAm3kQYLsru2gHTegDaAhHQKhwzBRhttR1fZQoaAZHQJw++pcX3xpoB03oA2gIR0Cod2Rs2vSudX2UKGgGR0CcjLZrHlwMaAdN6ANoCEdAqHekwlByCHV9lChoBkdAnAvSJ9AoomgHTegDaAhHQKh4QM4tHx11fZQoaAZHQJxSh36hxo9oB03oA2gIR0CofSw1R+BpdX2UKGgGR0CdxFVBUrCnaAdN6ANoCEdAqIOfW8RL9XV9lChoBkdAmw2/DpC8e2gHTegDaAhHQKiD3jSXt0F1fZQoaAZHQJqfVHd43WFoB03oA2gIR0CohHZFw1iwdX2UKGgGR0CfnYOfNA1OaAdN6ANoCEdAqIklQTEiuHV9lChoBkdAl4Y7ThHby2gHTegDaAhHQKiPcMz/IbR1fZQoaAZHQJk2OTot+ThoB03oA2gIR0Coj7N9x6v8dX2UKGgGR0CbmBFWGRFJaAdN6ANoCEdAqJBIR5C4SnV9lChoBkdAl2fLpaA4GWgHTegDaAhHQKiVGkzoEB91fZQoaAZHQJbRNyhi9ZloB03oA2gIR0Com5p8v24/dX2UKGgGR0CD5mWUKRdQaAdN6ANoCEdAqJvbncL0BnV9lChoBkdAmz5KKP4mC2gHTegDaAhHQKicdnr6ciJ1fZQoaAZHQJKTTIEKVptoB03oA2gIR0CooU4x+KCQdX2UKGgGR0CIiUwXZXdTaAdN6ANoCEdAqKfy8g6ltXV9lChoBkdAmGvfoV2zOWgHTegDaAhHQKioMDklu3t1fZQoaAZHQJqRC2JBPbhoB03oA2gIR0CoqMv1tfoidX2UKGgGR0CX6LZFocrBaAdN6ANoCEdAqK2nYUWVNnV9lChoBkdAmATvRRdhRmgHTegDaAhHQKi0FBSDRMN1fZQoaAZHQJsk2zqrzXloB03oA2gIR0CotE9xQzk7dX2UKGgGR0CZ3c+PikwfaAdN6ANoCEdAqLTftdAxBXV9lChoBkdAmDWwtWdVemgHTegDaAhHQKi55ubZvk11fZQoaAZHQJf5/bWVeKNoB03oA2gIR0CowIbaRISUdX2UKGgGR0CaMDoo/iYLaAdN6ANoCEdAqMDHdM0xd3V9lChoBkdAkYI8HbAUL2gHTegDaAhHQKjBYX3QD3d1fZQoaAZHQJzi7z4DcM5oB03oA2gIR0CoxkUIToMbdX2UKGgGR0CW0YvMr3CbaAdN6ANoCEdAqMzoQWepXXV9lChoBkdAnDmXfyf+TGgHTegDaAhHQKjNKgpz90l1fZQoaAZHQJ1JaE25xzdoB03oA2gIR0Cozc6LwWnCdX2UKGgGR0CQ6XLBsQ/YaAdN6ANoCEdAqNLPKyOaOXV9lChoBkdAlclwpSaVlmgHTegDaAhHQKjZWndfsu51fZQoaAZHQJy+k4Qz1sdoB03oA2gIR0Co2ZjjBEa3dX2UKGgGR0CYpwYPXkHVaAdN6ANoCEdAqNo5A4XGfnV9lChoBkdAm+gNR3u/lGgHTegDaAhHQKje7HjIaLp1fZQoaAZHQJqkoinpB5ZoB03oA2gIR0Co5XBlDneSdX2UKGgGR0CRtBYywfQsaAdN6ANoCEdAqOWt0vGp/HV9lChoBkdAnZLsaKk2xmgHTegDaAhHQKjmQattALR1fZQoaAZHQJtpiZ8a4tpoB03oA2gIR0Co6xr3j+72dX2UKGgGR0CDIrDQ7cO9aAdN6ANoCEdAqPHZ3qzJIXV9lChoBkdAkdCNwrDqGGgHTegDaAhHQKjyIOuJUHZ1fZQoaAZHQJxvk6BAfMhoB03oA2gIR0Co8sc+aBqcdX2UKGgGR0CYxtT72tdSaAdN6ANoCEdAqPemZ1FH8XV9lChoBkdAn9PvechC+mgHTegDaAhHQKj+RE9dNWV1fZQoaAZHQJ1LB3KSxJNoB03oA2gIR0Co/oO6mO2idX2UKGgGR0Cem0EvkBCEaAdN6ANoCEdAqP8endfsu3VlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7e33e029200656df6da53e09af6d0e7f6c30b97e91b3d507826b2c5b24d38862
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e6dedf07d80c565d90da6ed600c351bc94595e45e36a5a3940e2498953a6158b
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.0+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f984bd66550>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f984bd665e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f984bd66670>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f984bd66700>", "_build": "<function ActorCriticPolicy._build at 0x7f984bd66790>", "forward": "<function ActorCriticPolicy.forward at 0x7f984bd66820>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f984bd668b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f984bd66940>", "_predict": "<function ActorCriticPolicy._predict at 0x7f984bd669d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f984bd66a60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f984bd66af0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f984bd66b80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f984bd61750>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673975949328426475, "learning_rate": 0.00099, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UDhcZ9/jKoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAADqzCT/JRXQ+iIcVP3xC0T4iani/uhGPvwQMUD4nkki/iwgeP/Gfg74budc+UiMOwG5c/r1v5FM/KD/PvUEeSj/KaOQ+5ZKOP57mHT+GmZe9eS2vPkZZHj+2DUE+wNAVQKoXg7/cIwk/mDjTv+bqg78WRFa+y6K5PhBPET+/zw88A4b9vyWkjz1quhI+f/l5vjma3jxwVpq/P6wHPw95Nj1jYbK/yB01wGLVm742l8u/P6JKvyK8vb9bXBs/w/e8PHr+Fb+fqDQ89QJmv/imd7wF9nk/3CMJP9MiGz/m6oO/dfGqPmmUw77jlPc+IaLXPNkCTL8QYRI/oVmCvW4lU79vAjM+CjhJQCWBhT9avSS/uH9rvyKKpT9eQAq+msBMPrsB9b4/0Hg/zDwcPwOtpbwMhJE9rKXWP/xhVr+Z9A4/BfZ5P9wjCT/TIhs/5uqDv2rAfL8jgjK+QDoNP2GAQr//3D0/8mPtvuwhMz89Shs/CNMXPoRwT76i47U9w0t/PpnFob9OCEC9G4HzvuxQgb9t4Cy/OR00vilsIT+WH/c+QWUJQOAgCMDe3VK/CKWuvwX2eT/cIwk/0yIbP+bqg7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADARwG1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACArVqMPQAAAACnAOu/AAAAAOBEeL0AAAAAF3DkPwAAAAA14+k9AAAAAGTh7z8AAAAA1F+COwAAAABdBfi/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAApqhHNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgNYpEr4AAAAAAAP7vwAAAADw4Ce9AAAAAAVI6D8AAAAAQzlMOwAAAACgduM/AAAAAMbrebwAAAAAcMrqvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKruqbUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDQDVq9AAAAAG2j7r8AAAAAiOkLPAAAAACw/PQ/AAAAAEC25b0AAAAAtePbPwAAAAC2Abu6AAAAAMKh3r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwI2U2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAmoxoPQAAAADImt+/AAAAACpnWj0AAAAAMfLYPwAAAADhm5o9AAAAAIU83T8AAAAAiz6evQAAAACzQwHAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJ/Ge8oQWeqMAWyUTegDjAF0lEdAp86NF+d9UnV9lChoBkdAniw01/DtPmgHTegDaAhHQKfVMdbxEv11fZQoaAZHQJu3gBU70WdoB03oA2gIR0Cn1XS+QEIPdX2UKGgGR0CZzAm0mdAgaAdN6ANoCEdAp9YOQZGayHV9lChoBkdAmlt1ct5D7mgHTegDaAhHQKfa7NTtLL91fZQoaAZHQJgjJh5PdmBoB03oA2gIR0Cn4Wvw3HaOdX2UKGgGR0CXK5tJnQIEaAdN6ANoCEdAp+GtX9zfanV9lChoBkdAmVFavq1PWWgHTegDaAhHQKfiQ8WbgCR1fZQoaAZHQJhg8j8k2P1oB03oA2gIR0Cn5wxgqmTDdX2UKGgGR0CcyxqVQhwEaAdN6ANoCEdAp+16j59E1HV9lChoBkdAnQ/o+Sr5qWgHTegDaAhHQKftuQbMott1fZQoaAZHQJbqqLm6oVFoB03oA2gIR0Cn7k8bJfY0dX2UKGgGR0CccMcJdB0IaAdN6ANoCEdAp/MoN9YwI3V9lChoBkdAm6QvaL4ve2gHTegDaAhHQKf5nlf7aZh1fZQoaAZHQJYHoxtYSxtoB03oA2gIR0Cn+d3AEdNndX2UKGgGR0CbV0hakhzOaAdN6ANoCEdAp/p2lANXo3V9lChoBkdAnAcepfhMrWgHTegDaAhHQKf/S+TNdJJ1fZQoaAZHQJ5CwqgAZKpoB03oA2gIR0CoBehPsRg7dX2UKGgGR0CZW1FEAo5QaAdN6ANoCEdAqAYlP1tfonV9lChoBkdAnBlzfm9xqGgHTegDaAhHQKgGvh2GIsR1fZQoaAZHQJvuZz90ihZoB03oA2gIR0CoC4jtPYWddX2UKGgGR0CZ+4n3ta6jaAdN6ANoCEdAqBIlcbBGhHV9lChoBkdAkvwph4MWoGgHTegDaAhHQKgSZdIGyHF1fZQoaAZHQJrN84LkS29oB03oA2gIR0CoEwAXuVopdX2UKGgGR0CauTuE25xzaAdN6ANoCEdAqBfAJRfnfXV9lChoBkdAmGJ+NxVAA2gHTegDaAhHQKgeZXgccVB1fZQoaAZHQJZ8rDIikftoB03oA2gIR0CoHqY2bXpXdX2UKGgGR0CXsMbyYoiLaAdN6ANoCEdAqB88QqZtvXV9lChoBkdAl82QyM1jzGgHTegDaAhHQKgkBcafjCJ1fZQoaAZHQJq//HMlkYpoB03oA2gIR0CoKpEHdGiIdX2UKGgGR0CbEEWLxZuAaAdN6ANoCEdAqCrRoh6jWXV9lChoBkdAmjaV4Pf8/GgHTegDaAhHQKgrbGPPszF1fZQoaAZHQJq5ylgtvn9oB03oA2gIR0CoMC0fxMFmdX2UKGgGR0CacJH9FWn1aAdN6ANoCEdAqDaPGOuJUHV9lChoBkdAmfOMm0E5hmgHTegDaAhHQKg20fkFOfx1fZQoaAZHQJkdLi1iONpoB03oA2gIR0CoN2Ox8lXzdX2UKGgGR0Ccn2eeFtbcaAdN6ANoCEdAqDxLbSJCSnV9lChoBkdAmWrsWfseGWgHTegDaAhHQKhC591loUV1fZQoaAZHQJm2zojfNzNoB03oA2gIR0CoQyqTKT0QdX2UKGgGR0CaACBSk0rLaAdN6ANoCEdAqEPFfb9IgHV9lChoBkdAnm3axC6YmmgHTegDaAhHQKhIl4ZdfLN1fZQoaAZHQJw4YE6kqMFoB03oA2gIR0CoTzhqj8DTdX2UKGgGR0CV9dnvlU6xaAdN6ANoCEdAqE95HLA573V9lChoBkdAm+YPqPfbbmgHTegDaAhHQKhQFnU2DQJ1fZQoaAZHQJp6GxD9fkZoB03oA2gIR0CoVv6BqbjMdX2UKGgGR0CYiSzBAOawaAdN6ANoCEdAqF7e5H3DenV9lChoBkdAn54oL1EmY2gHTegDaAhHQKhfHzySV4Z1fZQoaAZHQJuX8xesxPBoB03oA2gIR0CoX7ghStNjdX2UKGgGR0CaqaSamXPaaAdN6ANoCEdAqGSigoPTX3V9lChoBkdAnUzksBhhIGgHTegDaAhHQKhrI3vQWvd1fZQoaAZHQJyX0IWxhUloB03oA2gIR0Coa2FWn0kGdX2UKGgGR0Cc7/gKWszVaAdN6ANoCEdAqGv54W1twnV9lChoBkdAm3kQYLsru2gHTegDaAhHQKhwzBRhttR1fZQoaAZHQJw++pcX3xpoB03oA2gIR0Cod2Rs2vSudX2UKGgGR0CcjLZrHlwMaAdN6ANoCEdAqHekwlByCHV9lChoBkdAnAvSJ9AoomgHTegDaAhHQKh4QM4tHx11fZQoaAZHQJxSh36hxo9oB03oA2gIR0CofSw1R+BpdX2UKGgGR0CdxFVBUrCnaAdN6ANoCEdAqIOfW8RL9XV9lChoBkdAmw2/DpC8e2gHTegDaAhHQKiD3jSXt0F1fZQoaAZHQJqfVHd43WFoB03oA2gIR0CohHZFw1iwdX2UKGgGR0CfnYOfNA1OaAdN6ANoCEdAqIklQTEiuHV9lChoBkdAl4Y7ThHby2gHTegDaAhHQKiPcMz/IbR1fZQoaAZHQJk2OTot+ThoB03oA2gIR0Coj7N9x6v8dX2UKGgGR0CbmBFWGRFJaAdN6ANoCEdAqJBIR5C4SnV9lChoBkdAl2fLpaA4GWgHTegDaAhHQKiVGkzoEB91fZQoaAZHQJbRNyhi9ZloB03oA2gIR0Com5p8v24/dX2UKGgGR0CD5mWUKRdQaAdN6ANoCEdAqJvbncL0BnV9lChoBkdAmz5KKP4mC2gHTegDaAhHQKicdnr6ciJ1fZQoaAZHQJKTTIEKVptoB03oA2gIR0CooU4x+KCQdX2UKGgGR0CIiUwXZXdTaAdN6ANoCEdAqKfy8g6ltXV9lChoBkdAmGvfoV2zOWgHTegDaAhHQKioMDklu3t1fZQoaAZHQJqRC2JBPbhoB03oA2gIR0CoqMv1tfoidX2UKGgGR0CX6LZFocrBaAdN6ANoCEdAqK2nYUWVNnV9lChoBkdAmATvRRdhRmgHTegDaAhHQKi0FBSDRMN1fZQoaAZHQJsk2zqrzXloB03oA2gIR0CotE9xQzk7dX2UKGgGR0CZ3c+PikwfaAdN6ANoCEdAqLTftdAxBXV9lChoBkdAmDWwtWdVemgHTegDaAhHQKi55ubZvk11fZQoaAZHQJf5/bWVeKNoB03oA2gIR0CowIbaRISUdX2UKGgGR0CaMDoo/iYLaAdN6ANoCEdAqMDHdM0xd3V9lChoBkdAkYI8HbAUL2gHTegDaAhHQKjBYX3QD3d1fZQoaAZHQJzi7z4DcM5oB03oA2gIR0CoxkUIToMbdX2UKGgGR0CW0YvMr3CbaAdN6ANoCEdAqMzoQWepXXV9lChoBkdAnDmXfyf+TGgHTegDaAhHQKjNKgpz90l1fZQoaAZHQJ1JaE25xzdoB03oA2gIR0Cozc6LwWnCdX2UKGgGR0CQ6XLBsQ/YaAdN6ANoCEdAqNLPKyOaOXV9lChoBkdAlclwpSaVlmgHTegDaAhHQKjZWndfsu51fZQoaAZHQJy+k4Qz1sdoB03oA2gIR0Co2ZjjBEa3dX2UKGgGR0CYpwYPXkHVaAdN6ANoCEdAqNo5A4XGfnV9lChoBkdAm+gNR3u/lGgHTegDaAhHQKje7HjIaLp1fZQoaAZHQJqkoinpB5ZoB03oA2gIR0Co5XBlDneSdX2UKGgGR0CRtBYywfQsaAdN6ANoCEdAqOWt0vGp/HV9lChoBkdAnZLsaKk2xmgHTegDaAhHQKjmQattALR1fZQoaAZHQJtpiZ8a4tpoB03oA2gIR0Co6xr3j+72dX2UKGgGR0CDIrDQ7cO9aAdN6ANoCEdAqPHZ3qzJIXV9lChoBkdAkdCNwrDqGGgHTegDaAhHQKjyIOuJUHZ1fZQoaAZHQJxvk6BAfMhoB03oA2gIR0Co8sc+aBqcdX2UKGgGR0CYxtT72tdSaAdN6ANoCEdAqPemZ1FH8XV9lChoBkdAn9PvechC+mgHTegDaAhHQKj+RE9dNWV1fZQoaAZHQJ1LB3KSxJNoB03oA2gIR0Co/oO6mO2idX2UKGgGR0Cem0EvkBCEaAdN6ANoCEdAqP8endfsu3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d80f62cf204c694eb20f83121ab3caa5f859d56df65b796eea4e8eae374f7916
3
+ size 1145333
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1834.4878995971462, "std_reward": 161.77344455657575, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-17T18:26:58.150643"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:be4b50ecf22826c4183d7cb50e23bca0e5879a267fde2b1bc6f0a433d491b4fd
3
+ size 2521