--- license: apache-2.0 base_model: google-bert/bert-base-cased tags: - generated_from_trainer model-index: - name: bert_baseline_prompt_adherence_task4_fold0 results: [] --- # bert_baseline_prompt_adherence_task4_fold0 This model is a fine-tuned version of [google-bert/bert-base-cased](https://huggingface.co/google-bert/bert-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4271 - Qwk: 0.6387 - Mse: 0.4239 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | |:-------------:|:------:|:----:|:---------------:|:------:|:------:| | No log | 0.0299 | 2 | 1.2960 | 0.0 | 1.2930 | | No log | 0.0597 | 4 | 0.9177 | 0.0 | 0.9154 | | No log | 0.0896 | 6 | 0.8271 | 0.3838 | 0.8254 | | No log | 0.1194 | 8 | 0.7326 | 0.3465 | 0.7313 | | No log | 0.1493 | 10 | 0.6599 | 0.3581 | 0.6586 | | No log | 0.1791 | 12 | 0.6243 | 0.3717 | 0.6227 | | No log | 0.2090 | 14 | 0.6024 | 0.3919 | 0.6005 | | No log | 0.2388 | 16 | 0.5293 | 0.3990 | 0.5275 | | No log | 0.2687 | 18 | 0.5958 | 0.6599 | 0.5946 | | No log | 0.2985 | 20 | 0.5865 | 0.6470 | 0.5851 | | No log | 0.3284 | 22 | 0.4997 | 0.6200 | 0.4975 | | No log | 0.3582 | 24 | 0.4852 | 0.4550 | 0.4825 | | No log | 0.3881 | 26 | 0.5626 | 0.3360 | 0.5596 | | No log | 0.4179 | 28 | 0.6943 | 0.2663 | 0.6911 | | No log | 0.4478 | 30 | 0.6648 | 0.2753 | 0.6616 | | No log | 0.4776 | 32 | 0.5340 | 0.3669 | 0.5308 | | No log | 0.5075 | 34 | 0.4475 | 0.5778 | 0.4444 | | No log | 0.5373 | 36 | 0.4749 | 0.6546 | 0.4720 | | No log | 0.5672 | 38 | 0.5331 | 0.6635 | 0.5306 | | No log | 0.5970 | 40 | 0.5591 | 0.6712 | 0.5569 | | No log | 0.6269 | 42 | 0.5329 | 0.6517 | 0.5307 | | No log | 0.6567 | 44 | 0.4773 | 0.6521 | 0.4749 | | No log | 0.6866 | 46 | 0.4526 | 0.5105 | 0.4499 | | No log | 0.7164 | 48 | 0.4667 | 0.4248 | 0.4638 | | No log | 0.7463 | 50 | 0.4597 | 0.4232 | 0.4567 | | No log | 0.7761 | 52 | 0.4413 | 0.4921 | 0.4382 | | No log | 0.8060 | 54 | 0.4265 | 0.5327 | 0.4234 | | No log | 0.8358 | 56 | 0.4218 | 0.5857 | 0.4188 | | No log | 0.8657 | 58 | 0.4221 | 0.6155 | 0.4191 | | No log | 0.8955 | 60 | 0.4244 | 0.6239 | 0.4213 | | No log | 0.9254 | 62 | 0.4273 | 0.6354 | 0.4242 | | No log | 0.9552 | 64 | 0.4272 | 0.6387 | 0.4241 | | No log | 0.9851 | 66 | 0.4271 | 0.6387 | 0.4239 | ### Framework versions - Transformers 4.42.3 - Pytorch 2.1.2 - Datasets 2.20.0 - Tokenizers 0.19.1