File size: 2,011 Bytes
1824b83 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
---
license: apache-2.0
base_model: google/flan-t5-small
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: flan-t5-small-asap_t4_f2_prompt_adherence
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# flan-t5-small-asap_t4_f2_prompt_adherence
This model is a fine-tuned version of [google/flan-t5-small](https://huggingface.co/google/flan-t5-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0621
- Rouge1: 82.6646
- Rouge2: 78.018
- Rougel: 82.6132
- Rougelsum: 82.6206
- Gen Len: 12.1479
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
| No log | 1.0 | 266 | 0.0875 | 79.5052 | 73.4411 | 79.5255 | 79.4473 | 12.2169 |
| 0.396 | 2.0 | 532 | 0.0694 | 80.9177 | 75.9474 | 80.9177 | 80.8659 | 12.1817 |
| 0.396 | 3.0 | 798 | 0.0619 | 82.55 | 77.8505 | 82.5292 | 82.4624 | 12.1437 |
| 0.0734 | 4.0 | 1064 | 0.0611 | 82.5957 | 77.9529 | 82.5931 | 82.5353 | 12.1380 |
| 0.0734 | 5.0 | 1330 | 0.0621 | 82.6646 | 78.018 | 82.6132 | 82.6206 | 12.1479 |
### Framework versions
- Transformers 4.38.2
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.15.2
|