File size: 5,313 Bytes
842792e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
import os
from trainer import Trainer, TrainerArgs
from TTS.tts.configs.shared_configs import BaseDatasetConfig, CharactersConfig
from TTS.tts.configs.vits_config import VitsConfig
from TTS.tts.datasets import load_tts_samples
from TTS.tts.models.vits import Vits, VitsArgs, VitsAudioConfig
from TTS.tts.utils.speakers import SpeakerManager
from TTS.tts.utils.text.tokenizer import TTSTokenizer
from TTS.utils.audio import AudioProcessor
output_path = os.path.dirname(os.path.abspath(__file__))
# dataset_config = BaseDatasetConfig(
# formatter="vctk", meta_file_train="", language="en-us", path=os.path.join(output_path, "../VCTK/")
# )
CONTINUE_PATH=None
RESTORE_PATH=None
START_WITH_EVAL=True
GRAD_ACUMM_STEPS=1
meta_file = '/home/ubuntu/nctb-cropped/metadata.txt'
root_path = '/home/ubuntu/nctb-cropped/'
def formatter(root_path, meta_file, **kwargs): # pylint: disable=unused-argument
"""Normalizes the LJSpeech meta data file to TTS format
https://keithito.com/LJ-Speech-Dataset/"""
txt_file = meta_file
items = []
with open(txt_file, "r", encoding="utf-8") as ttf:
for line in ttf:
cols = line.split("|")
wav_file = os.path.join(root_path,'audio', cols[0])
speaker_name = cols[0].split('_')[-1].split('.')[0]
try:
text = cols[1]
except:
print("not found")
items.append({"text": text, "audio_file": wav_file, "speaker_name": speaker_name, "root_path": root_path})
return items
dataset_config = BaseDatasetConfig(
meta_file_train=meta_file, path=os.path.join(root_path, ""), language="bn"
)
characters_config = CharactersConfig(
pad = '<PAD>',
eos = '<EOS>', #'<EOS>', #'।',
bos = '<BOS>',# None,
blank = '<BLNK>',
phonemes = None,
characters = "abcdefghijklmnopqrstuvwxyz0123456789+=/*√তট৫ভিঐঋখঊড়ইজমএেঘঙসীঢ়হঞ‘ঈকণ৬ঁৗশঢঠ\u200c১্২৮দৃঔগও—ছউংবৈঝাযফ\u200dচরষঅৌৎথড়৪ধ০ুূ৩আঃপয়’'”নলো_…ৰ",
punctuations = "-–:;!,|.?॥। “",
)
audio_config = VitsAudioConfig(
sample_rate=16000, win_length=1024, hop_length=256, num_mels=80, mel_fmin=0, mel_fmax=None
)
vitsArgs = VitsArgs(
use_speaker_embedding=True,
)
config = VitsConfig(
model_args=vitsArgs,
audio=audio_config,
run_name="vits_nctb",
batch_size=64,
eval_batch_size=8,
batch_group_size=5,
num_loader_workers=4,
num_eval_loader_workers=4,
run_eval=True,
test_delay_epochs=-1,
epochs=1000,
# text_cleaner="english_cleaners",
text_cleaner='phoneme_cleaners',
use_phonemes=True,
phoneme_language="bn",
phoneme_cache_path=os.path.join(output_path, "phoneme_cache"),
compute_input_seq_cache=True,
print_step=25,
print_eval=False,
mixed_precision=True,
max_text_len=325, # change this if you have a larger VRAM than 16GB
output_path=output_path,
datasets=[dataset_config],
characters=characters_config,
save_step=5000,
cudnn_benchmark=True,
test_sentences = [
'আমার সোনার বাংলা, আমি তোমায় ভালোবাসি।',
'চিরদিন তোমার আকাশ, তোমার বাতাস, আমার প্রাণে বাজায় বাঁশি',
'ও মা, ফাগুনে তোর আমের বনে ঘ্রাণে পাগল করে,মরি হায়, হায় রে।'
]
)
# INITIALIZE THE AUDIO PROCESSOR
# Audio processor is used for feature extraction and audio I/O.
# It mainly serves to the dataloader and the training loggers.
ap = AudioProcessor.init_from_config(config)
# INITIALIZE THE TOKENIZER
# Tokenizer is used to convert text to sequences of token IDs.
# config is updated with the default characters if not defined in the config.
tokenizer, config = TTSTokenizer.init_from_config(config)
# LOAD DATA SAMPLES
# Each sample is a list of ```[text, audio_file_path, speaker_name]```
# You can define your custom sample loader returning the list of samples.
# Or define your custom formatter and pass it to the `load_tts_samples`.
# Check `TTS.tts.datasets.load_tts_samples` for more details.
train_samples, eval_samples = load_tts_samples(
dataset_config,
formatter=formatter,
eval_split=True,
eval_split_max_size=config.eval_split_max_size,
eval_split_size=config.eval_split_size,
)
# init speaker manager for multi-speaker training
# it maps speaker-id to speaker-name in the model and data-loader
speaker_manager = SpeakerManager()
speaker_manager.set_ids_from_data(train_samples + eval_samples, parse_key="speaker_name")
config.model_args.num_speakers = speaker_manager.num_speakers
# init model
model = Vits(config, ap, tokenizer, speaker_manager)
# init the trainer and 🚀
trainer = Trainer(
TrainerArgs(
continue_path=CONTINUE_PATH,
restore_path=RESTORE_PATH,
skip_train_epoch=False,
start_with_eval=START_WITH_EVAL,
grad_accum_steps=GRAD_ACUMM_STEPS,
),
config,
output_path,
model=model,
train_samples=train_samples,
eval_samples=eval_samples,
)
trainer.fit() |