File size: 5,313 Bytes
842792e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import os

from trainer import Trainer, TrainerArgs

from TTS.tts.configs.shared_configs import BaseDatasetConfig, CharactersConfig
from TTS.tts.configs.vits_config import VitsConfig
from TTS.tts.datasets import load_tts_samples
from TTS.tts.models.vits import Vits, VitsArgs, VitsAudioConfig
from TTS.tts.utils.speakers import SpeakerManager
from TTS.tts.utils.text.tokenizer import TTSTokenizer
from TTS.utils.audio import AudioProcessor

output_path = os.path.dirname(os.path.abspath(__file__))
# dataset_config = BaseDatasetConfig(
#     formatter="vctk", meta_file_train="", language="en-us", path=os.path.join(output_path, "../VCTK/")
# )

CONTINUE_PATH=None
RESTORE_PATH=None
START_WITH_EVAL=True
GRAD_ACUMM_STEPS=1

meta_file = '/home/ubuntu/nctb-cropped/metadata.txt'
root_path = '/home/ubuntu/nctb-cropped/'

def formatter(root_path, meta_file, **kwargs):  # pylint: disable=unused-argument
    """Normalizes the LJSpeech meta data file to TTS format
    https://keithito.com/LJ-Speech-Dataset/"""
    txt_file = meta_file
    items = []
    with open(txt_file, "r", encoding="utf-8") as ttf:
        for line in ttf:
            cols = line.split("|")
            wav_file = os.path.join(root_path,'audio', cols[0])
            speaker_name = cols[0].split('_')[-1].split('.')[0]
            try:
                text = cols[1]
            except:
                print("not found")

            items.append({"text": text, "audio_file": wav_file, "speaker_name": speaker_name, "root_path": root_path})
    return items


dataset_config = BaseDatasetConfig(
     meta_file_train=meta_file, path=os.path.join(root_path, ""), language="bn"
)


characters_config = CharactersConfig(
    pad = '<PAD>',
    eos = '<EOS>', #'<EOS>', #'।',
    bos = '<BOS>',# None,
    blank = '<BLNK>',
    phonemes = None,
    characters =  "abcdefghijklmnopqrstuvwxyz0123456789+=/*√তট৫ভিঐঋখঊড়ইজমএেঘঙসীঢ়হঞ‘ঈকণ৬ঁৗশঢঠ\u200c১্২৮দৃঔগও—ছউংবৈঝাযফ\u200dচরষঅৌৎথড়৪ধ০ুূ৩আঃপয়’'”নলো_…ৰ",
    punctuations = "-–:;!,|.?॥। “",
)


audio_config = VitsAudioConfig(
    sample_rate=16000, win_length=1024, hop_length=256, num_mels=80, mel_fmin=0, mel_fmax=None
)

vitsArgs = VitsArgs(
    use_speaker_embedding=True,
)

config = VitsConfig(
    model_args=vitsArgs,
    audio=audio_config,
    run_name="vits_nctb",
    batch_size=64,
    eval_batch_size=8,
    batch_group_size=5,
    num_loader_workers=4,
    num_eval_loader_workers=4,
    run_eval=True,
    test_delay_epochs=-1,
    epochs=1000,
    # text_cleaner="english_cleaners",
    text_cleaner='phoneme_cleaners',
    use_phonemes=True,
    phoneme_language="bn",
    phoneme_cache_path=os.path.join(output_path, "phoneme_cache"),
    compute_input_seq_cache=True,
    print_step=25,
    print_eval=False,
    mixed_precision=True,
    max_text_len=325,  # change this if you have a larger VRAM than 16GB
    output_path=output_path,
    datasets=[dataset_config],
    characters=characters_config,
    save_step=5000,
    cudnn_benchmark=True,
    test_sentences = [
        'আমার   সোনার বাংলা, আমি তোমায় ভালোবাসি।',
        'চিরদিন   তোমার আকাশ, তোমার বাতাস, আমার প্রাণে বাজায় বাঁশি', 
        'ও মা,   ফাগুনে তোর আমের বনে ঘ্রাণে পাগল করে,মরি হায়, হায় রে।'
    ]
)

# INITIALIZE THE AUDIO PROCESSOR
# Audio processor is used for feature extraction and audio I/O.
# It mainly serves to the dataloader and the training loggers.
ap = AudioProcessor.init_from_config(config)

# INITIALIZE THE TOKENIZER
# Tokenizer is used to convert text to sequences of token IDs.
# config is updated with the default characters if not defined in the config.
tokenizer, config = TTSTokenizer.init_from_config(config)

# LOAD DATA SAMPLES
# Each sample is a list of ```[text, audio_file_path, speaker_name]```
# You can define your custom sample loader returning the list of samples.
# Or define your custom formatter and pass it to the `load_tts_samples`.
# Check `TTS.tts.datasets.load_tts_samples` for more details.
train_samples, eval_samples = load_tts_samples(
    dataset_config,
    formatter=formatter,
    eval_split=True,
    eval_split_max_size=config.eval_split_max_size,
    eval_split_size=config.eval_split_size,
)

# init speaker manager for multi-speaker training
# it maps speaker-id to speaker-name in the model and data-loader
speaker_manager = SpeakerManager()
speaker_manager.set_ids_from_data(train_samples + eval_samples, parse_key="speaker_name")
config.model_args.num_speakers = speaker_manager.num_speakers

# init model
model = Vits(config, ap, tokenizer, speaker_manager)

# init the trainer and 🚀
trainer = Trainer(
    TrainerArgs(
        continue_path=CONTINUE_PATH,
        restore_path=RESTORE_PATH,
        skip_train_epoch=False,
        start_with_eval=START_WITH_EVAL,
        grad_accum_steps=GRAD_ACUMM_STEPS,
    ),
    config,
    output_path,
    model=model,
    train_samples=train_samples,
    eval_samples=eval_samples,
)
trainer.fit()