File size: 2,057 Bytes
9ed2e3a b9af5b2 eee0f1c bbf8215 5780d92 bbf8215 720543f 9ed2e3a 720543f 9ed2e3a 4e484e3 5780d92 4e484e3 5780d92 9ed2e3a 2e8fc91 9ed2e3a 4e0f1d3 3a97f6b 9ed2e3a 6a8efde |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
---
language:
- zh
pipeline_tag: text-generation
---
FP16 Model converted from AquilaChat-7b v0.6 Pytorch Model:
https://github.com/FlagAI-Open/FlagAI/tree/master/examples/Aquila/Aquila-chat
Support Inference with AutoModelForCausalLM, ORTModelForCausalLM and OVModelForCausalLM
```python
#!pip install transformers>=4.30.2
#!pip install optimum>=1.8.8 optimum-intel[openvino]==1.9.1
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained('sammysun0711/aquilachat-7b-hf', trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained('sammysun0711/aquilachat-7b-hf', trust_remote_code=True)
model = model.eval()
# from optimum.onnxruntime import ORTModelForCausalLM
# model = ORTModelForCausalLM.from_pretrained('sammysun0711/aquilachat-7b-hf', export=True, use_cache=True, trust_remote_code=True)
# from optimum.intel import OVModelForCausalLM
# model = OVModelForCausalLM.from_pretrained('sammysun0711/aquilachat-7b-hf', export=True, use_cache=True, trust_remote_code=True)
question = '北京为什么是中国的首都?'
prompt = (
'''A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.'''
f'''###Human: {question}###Assistant:'''
)
with torch.no_grad():
ret = model.generate(
**tokenizer(prompt, return_tensors='pt').to('cpu'),
do_sample=False,
max_new_tokens=200,
use_cache=True
)
print(tokenizer.decode(ret.tolist()[0]))
```
> 北京是中国的首都,是因为它在中国历史和文化中具有重要的地位,被选中作为中国的政治中心。在中国古代,北京是几个朝代的首都,如辽、金、元、明、清朝。在这些朝代,北京都是政治、经济、文化中心和军事重镇。此外,北京还是现代中国的政治中心,有着重要的国际地位。
AquilaChat-7B开源模型使用《智源Aquila系列模型许可协议》, 原始代码基于Apache Licence 2.0。
|