File size: 2,138 Bytes
5d594ee
 
 
 
 
 
c2d03f8
5d594ee
 
 
 
 
 
 
 
 
c2d03f8
 
5d594ee
 
 
 
 
 
00e2480
5d594ee
 
 
 
 
 
 
c2d03f8
5d594ee
00e2480
 
5d594ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
00e2480
 
 
 
 
5d594ee
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
---
license: mit
base_model: distil-whisper/distil-large-v3
tags:
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_16_1
metrics:
- wer
model-index:
- name: distil-whisper/distil-large-v3
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: mozilla-foundation/common_voice_16_1 hi
      type: mozilla-foundation/common_voice_16_1
      config: hi
      split: test
      args: hi
    metrics:
    - name: Wer
      type: wer
      value: 0.26639882562002626
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# distil-whisper/distil-large-v3

This model is a fine-tuned version of [distil-whisper/distil-large-v3](https://huggingface.co/distil-whisper/distil-large-v3) on the mozilla-foundation/common_voice_16_1 hi dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3749
- Wer: 0.2664

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer    |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.1035        | 4.5   | 1000 | 0.3015          | 0.3250 |
| 0.0165        | 9.01  | 2000 | 0.3496          | 0.3007 |
| 0.0022        | 13.51 | 3000 | 0.3649          | 0.2786 |
| 0.0011        | 18.02 | 4000 | 0.3700          | 0.2681 |
| 0.0003        | 22.52 | 5000 | 0.3749          | 0.2664 |


### Framework versions

- Transformers 4.40.0.dev0
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.1