File size: 2,138 Bytes
5d594ee c2d03f8 5d594ee c2d03f8 5d594ee 00e2480 5d594ee c2d03f8 5d594ee 00e2480 5d594ee 00e2480 5d594ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
---
license: mit
base_model: distil-whisper/distil-large-v3
tags:
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_16_1
metrics:
- wer
model-index:
- name: distil-whisper/distil-large-v3
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: mozilla-foundation/common_voice_16_1 hi
type: mozilla-foundation/common_voice_16_1
config: hi
split: test
args: hi
metrics:
- name: Wer
type: wer
value: 0.26639882562002626
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distil-whisper/distil-large-v3
This model is a fine-tuned version of [distil-whisper/distil-large-v3](https://huggingface.co/distil-whisper/distil-large-v3) on the mozilla-foundation/common_voice_16_1 hi dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3749
- Wer: 0.2664
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.1035 | 4.5 | 1000 | 0.3015 | 0.3250 |
| 0.0165 | 9.01 | 2000 | 0.3496 | 0.3007 |
| 0.0022 | 13.51 | 3000 | 0.3649 | 0.2786 |
| 0.0011 | 18.02 | 4000 | 0.3700 | 0.2681 |
| 0.0003 | 22.52 | 5000 | 0.3749 | 0.2664 |
### Framework versions
- Transformers 4.40.0.dev0
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.1
|