--- license: apache-2.0 tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy base_model: ntu-spml/distilhubert model-index: - name: distilhubert-finetuned-gtzan results: - task: type: audio-classification name: Audio Classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - type: accuracy value: 0.82 name: Accuracy --- # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.5716 - Accuracy: 0.82 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.7297 | 1.0 | 113 | 1.8011 | 0.44 | | 1.24 | 2.0 | 226 | 1.3045 | 0.64 | | 0.9805 | 3.0 | 339 | 0.9888 | 0.7 | | 0.6853 | 4.0 | 452 | 0.7508 | 0.79 | | 0.4502 | 5.0 | 565 | 0.6224 | 0.81 | | 0.3015 | 6.0 | 678 | 0.5411 | 0.83 | | 0.2244 | 7.0 | 791 | 0.6293 | 0.78 | | 0.3108 | 8.0 | 904 | 0.5857 | 0.81 | | 0.1644 | 9.0 | 1017 | 0.5355 | 0.83 | | 0.1198 | 10.0 | 1130 | 0.5716 | 0.82 | ### Framework versions - Transformers 4.30.0.dev0 - Pytorch 2.1.0.dev20230607+cu121 - Datasets 2.13.1.dev0 - Tokenizers 0.13.3