|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
Fine-tuning the Flax library models for sequence to sequence speech recognition. |
|
""" |
|
|
|
|
|
import logging |
|
import os |
|
import sys |
|
import time |
|
from dataclasses import field |
|
from functools import partial |
|
from pathlib import Path |
|
from typing import Any, Callable, Dict, List, Optional, Union |
|
|
|
import datasets |
|
import evaluate |
|
import flax |
|
import jax |
|
import jax.numpy as jnp |
|
import numpy as np |
|
import optax |
|
from datasets import DatasetDict, load_dataset |
|
from flax import jax_utils, traverse_util |
|
from flax.jax_utils import pad_shard_unpad, unreplicate |
|
from flax.training import train_state |
|
from flax.training.common_utils import get_metrics, onehot, shard, shard_prng_key |
|
from huggingface_hub import Repository, create_repo |
|
from torch.utils.data import DataLoader |
|
from tqdm import tqdm |
|
|
|
import transformers |
|
from transformers import ( |
|
AutoConfig, |
|
AutoFeatureExtractor, |
|
AutoProcessor, |
|
AutoTokenizer, |
|
FlaxAutoModelForSpeechSeq2Seq, |
|
HfArgumentParser, |
|
Seq2SeqTrainingArguments, |
|
is_tensorboard_available, |
|
) |
|
from transformers.file_utils import get_full_repo_name |
|
from transformers.utils import check_min_version, send_example_telemetry |
|
from transformers.utils.versions import require_version |
|
|
|
|
|
|
|
check_min_version("4.32.0.dev0") |
|
|
|
require_version("datasets>=2.14.0", "To fix: pip install -r examples/flax/speech-recogintion/requirements.txt") |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
@flax.struct.dataclass |
|
class ModelArguments: |
|
""" |
|
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. |
|
""" |
|
|
|
model_name_or_path: str = field( |
|
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} |
|
) |
|
config_name: Optional[str] = field( |
|
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} |
|
) |
|
tokenizer_name: Optional[str] = field( |
|
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} |
|
) |
|
feature_extractor_name: Optional[str] = field( |
|
default=None, metadata={"help": "feature extractor name or path if not the same as model_name"} |
|
) |
|
cache_dir: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "Where to store the pretrained models downloaded from huggingface.co"}, |
|
) |
|
use_fast_tokenizer: bool = field( |
|
default=True, |
|
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."}, |
|
) |
|
model_revision: str = field( |
|
default="main", |
|
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}, |
|
) |
|
use_auth_token: bool = field( |
|
default=False, |
|
metadata={ |
|
"help": "Will use the token generated when running `transformers-cli login` (necessary to use this script " |
|
"with private models)." |
|
}, |
|
) |
|
dtype: Optional[str] = field( |
|
default="float32", |
|
metadata={ |
|
"help": ( |
|
"Floating-point format in which the model weights should be initialized and trained. Choose one of" |
|
" `[float32, float16, bfloat16]`." |
|
) |
|
}, |
|
) |
|
num_beams: Optional[int] = field( |
|
default=None, |
|
metadata={ |
|
"help": ( |
|
"Number of beams to use for evaluation. This argument will be passed to `model.generate`, " |
|
"which is used during evaluation." |
|
) |
|
}, |
|
) |
|
|
|
|
|
@flax.struct.dataclass |
|
class DataTrainingArguments: |
|
""" |
|
Arguments pertaining to what data we are going to input our model for training and eval. |
|
""" |
|
|
|
dataset_name: str = field( |
|
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."} |
|
) |
|
dataset_config_name: Optional[str] = field( |
|
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} |
|
) |
|
text_column: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "The name of the column in the datasets containing the full texts (for summarization)."}, |
|
) |
|
dataset_cache_dir: Optional[str] = field( |
|
default=None, metadata={"help": "Path to cache directory for saving and loading datasets"} |
|
) |
|
overwrite_cache: bool = field( |
|
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} |
|
) |
|
preprocessing_num_workers: Optional[int] = field( |
|
default=None, |
|
metadata={"help": "The number of processes to use for the preprocessing."}, |
|
) |
|
max_train_samples: Optional[int] = field( |
|
default=None, |
|
metadata={ |
|
"help": "For debugging purposes or quicker training, truncate the number of training examples to this " |
|
"value if set." |
|
}, |
|
) |
|
max_eval_samples: Optional[int] = field( |
|
default=None, |
|
metadata={ |
|
"help": "For debugging purposes or quicker training, truncate the number of evaluation examples to this " |
|
"value if set." |
|
}, |
|
) |
|
audio_column_name: str = field( |
|
default="audio", |
|
metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"}, |
|
) |
|
text_column_name: str = field( |
|
default="text", |
|
metadata={"help": "The name of the dataset column containing the text data. Defaults to 'text'"}, |
|
) |
|
max_duration_in_seconds: float = field( |
|
default=20.0, |
|
metadata={"help": "Filter audio files that are longer than `max_duration_in_seconds` seconds"}, |
|
) |
|
min_duration_in_seconds: float = field( |
|
default=0.0, |
|
metadata={"help": "Filter audio files that are shorter than `min_duration_in_seconds` seconds"}, |
|
) |
|
max_label_length: float = field( |
|
default=128, |
|
metadata={"help": "Truncate transcriptions that are longer `max_eval_length` tokens."}, |
|
) |
|
pad_input_to_multiple_of: Optional[int] = field( |
|
default=None, |
|
metadata={ |
|
"help": "If set will pad the input sequence to a multiple of the provided value. " |
|
"This is important to avoid triggering recompilations on TPU. If unspecified, will default to padding the inputs to max length." |
|
}, |
|
) |
|
pad_target_to_multiple_of: Optional[int] = field( |
|
default=None, |
|
metadata={ |
|
"help": "If set will pad the target sequence to a multiple of the provided value. " |
|
"This is important to avoid triggering recompilations on TPU. If unspecified, will default to padding the targets to max length." |
|
}, |
|
) |
|
preprocessing_only: bool = field( |
|
default=False, |
|
metadata={ |
|
"help": "Whether to only do data preprocessing and skip training. " |
|
"This is especially useful when data preprocessing errors out in distributed training due to timeout. " |
|
"In this case, one should run the preprocessing in a non-distributed setup with `preprocessing_only=True` " |
|
"so that the cached datasets can consequently be loaded in distributed training" |
|
}, |
|
) |
|
train_split_name: str = field( |
|
default="train", |
|
metadata={ |
|
"help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'" |
|
}, |
|
) |
|
eval_split_name: str = field( |
|
default="validation", |
|
metadata={ |
|
"help": "The name of the evaluation data set split to use (via the datasets library). Defaults to 'validation'" |
|
}, |
|
) |
|
do_lower_case: bool = field( |
|
default=True, |
|
metadata={"help": "Whether the target text should be lower cased."}, |
|
) |
|
language: str = field( |
|
default=None, |
|
metadata={ |
|
"help": ( |
|
"Language for multilingual fine-tuning. This argument should be set for multilingual fine-tuning " |
|
"only. For English speech recognition, it should be set to `None`." |
|
) |
|
}, |
|
) |
|
task: str = field( |
|
default="transcribe", |
|
metadata={"help": "Task, either `transcribe` for speech recognition or `translate` for speech translation."}, |
|
) |
|
|
|
|
|
def shift_tokens_right(label_ids: np.array, decoder_start_token_id: int) -> np.ndarray: |
|
""" |
|
Shift label ids one token to the right. |
|
""" |
|
shifted_label_ids = np.zeros_like(label_ids) |
|
shifted_label_ids[:, 1:] = label_ids[:, :-1] |
|
shifted_label_ids[:, 0] = decoder_start_token_id |
|
|
|
return shifted_label_ids |
|
|
|
|
|
@flax.struct.dataclass |
|
class FlaxDataCollatorSpeechSeq2SeqWithPadding: |
|
""" |
|
Data collator that will dynamically pad the inputs received. |
|
Args: |
|
processor ([`Wav2Vec2Processor`]) |
|
The processor used for proccessing the data. |
|
decoder_start_token_id (:obj: `int`) |
|
The begin-of-sentence of the decoder. |
|
input_padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`): |
|
Select a strategy to pad the returned input sequences (according to the model's padding side and padding index) |
|
among: |
|
* :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single |
|
sequence if provided). |
|
* :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the |
|
maximum acceptable input length for the model if that argument is not provided. |
|
* :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of |
|
different lengths). |
|
target_padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`): |
|
Select a strategy to pad the returned target sequences (according to the model's padding side and padding index). |
|
See above for details. |
|
max_input_length (:obj:`float`, `optional`): |
|
Maximum length of the ``input_values`` of the returned list and optionally padding length (see above). |
|
max_target_length (:obj:`int`, `optional`): |
|
Maximum length of the ``labels`` of the returned list and optionally padding length (see above). |
|
pad_input_to_multiple_of (:obj:`int`, `optional`): |
|
If set will pad the input sequence to a multiple of the provided value. |
|
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >= |
|
7.5 (Volta). |
|
pad_target_to_multiple_of (:obj:`int`, `optional`): |
|
If set will pad the target sequence to a multiple of the provided value. |
|
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >= |
|
7.5 (Volta). |
|
""" |
|
|
|
processor: Any |
|
decoder_start_token_id: int |
|
input_padding: Union[bool, str] = "longest" |
|
target_padding: Union[bool, str] = "max_length" |
|
max_input_length: Optional[float] = None |
|
max_target_length: Optional[int] = None |
|
pad_input_to_multiple_of: Optional[int] = None |
|
pad_target_to_multiple_of: Optional[int] = None |
|
|
|
def __call__(self, features: List[Dict[str, Union[List[int], np.ndarray]]]) -> Dict[str, np.ndarray]: |
|
|
|
|
|
model_input_name = self.processor.model_input_names[0] |
|
|
|
|
|
input_features = {model_input_name: [feature[model_input_name] for feature in features]} |
|
label_features = {"input_ids": [feature["labels"] for feature in features]} |
|
|
|
|
|
batch = self.processor.feature_extractor.pad( |
|
input_features, |
|
max_length=self.max_input_length, |
|
padding=self.input_padding, |
|
pad_to_multiple_of=self.pad_input_to_multiple_of, |
|
return_tensors="np", |
|
) |
|
|
|
labels_batch = self.processor.tokenizer.pad( |
|
label_features, |
|
max_length=self.max_target_length, |
|
padding=self.target_padding, |
|
pad_to_multiple_of=self.pad_target_to_multiple_of, |
|
return_tensors="np", |
|
) |
|
|
|
|
|
|
|
labels = labels_batch["input_ids"] |
|
if (labels[:, 0] == self.decoder_start_token_id).all().item(): |
|
labels = labels[:, 1:] |
|
labels_batch.attention_mask = labels_batch.attention_mask[:, 1:] |
|
|
|
decoder_input_ids = shift_tokens_right(labels, self.decoder_start_token_id) |
|
|
|
|
|
labels = np.ma.array(labels, mask=np.not_equal(labels_batch.attention_mask, 1)) |
|
labels = labels.filled(fill_value=-100) |
|
|
|
batch["labels"] = labels |
|
batch["decoder_input_ids"] = decoder_input_ids |
|
|
|
return batch |
|
|
|
|
|
class TrainState(train_state.TrainState): |
|
dropout_rng: jnp.ndarray |
|
|
|
def replicate(self): |
|
return jax_utils.replicate(self).replace(dropout_rng=shard_prng_key(self.dropout_rng)) |
|
|
|
|
|
def write_metric(summary_writer, train_metrics, eval_metrics, train_time, step): |
|
summary_writer.scalar("train_time", train_time, step) |
|
|
|
train_metrics = get_metrics(train_metrics) |
|
for key, vals in train_metrics.items(): |
|
tag = f"train_{key}" |
|
for i, val in enumerate(vals): |
|
summary_writer.scalar(tag, val, step - len(vals) + i + 1) |
|
|
|
for metric_name, value in eval_metrics.items(): |
|
summary_writer.scalar(f"eval_{metric_name}", value, step) |
|
|
|
|
|
def create_learning_rate_fn( |
|
num_train_steps: int, num_warmup_steps: int, learning_rate: float |
|
) -> Callable[[int], jnp.array]: |
|
"""Returns a linear warmup, linear_decay learning rate function.""" |
|
warmup_fn = optax.linear_schedule(init_value=0.0, end_value=learning_rate, transition_steps=num_warmup_steps) |
|
decay_fn = optax.linear_schedule( |
|
init_value=learning_rate, end_value=0, transition_steps=num_train_steps - num_warmup_steps |
|
) |
|
schedule_fn = optax.join_schedules(schedules=[warmup_fn, decay_fn], boundaries=[num_warmup_steps]) |
|
return schedule_fn |
|
|
|
|
|
def main(): |
|
|
|
|
|
|
|
|
|
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments)) |
|
|
|
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): |
|
|
|
|
|
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) |
|
else: |
|
model_args, data_args, training_args = parser.parse_args_into_dataclasses() |
|
|
|
|
|
|
|
send_example_telemetry("run_speech_recognition_seq2seq", model_args, data_args, framework="flax") |
|
|
|
|
|
|
|
logging.basicConfig( |
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", |
|
datefmt="%m/%d/%Y %H:%M:%S", |
|
handlers=[logging.StreamHandler(sys.stdout)], |
|
) |
|
|
|
|
|
logger.setLevel(logging.INFO if jax.process_index() == 0 else logging.ERROR) |
|
if jax.process_index() == 0: |
|
datasets.utils.logging.set_verbosity_warning() |
|
transformers.utils.logging.set_verbosity_info() |
|
else: |
|
datasets.utils.logging.set_verbosity_error() |
|
transformers.utils.logging.set_verbosity_error() |
|
|
|
logger.info("Training/evaluation parameters %s", training_args) |
|
|
|
|
|
if ( |
|
os.path.exists(training_args.output_dir) |
|
and os.listdir(training_args.output_dir) |
|
and training_args.do_train |
|
and not training_args.overwrite_output_dir |
|
): |
|
raise ValueError( |
|
f"Output directory ({training_args.output_dir}) already exists and is not empty." |
|
"Use `--overwrite_output_dir` to overcome." |
|
) |
|
|
|
|
|
if training_args.push_to_hub: |
|
if training_args.hub_model_id is None: |
|
repo_name = get_full_repo_name( |
|
Path(training_args.output_dir).absolute().name, token=training_args.hub_token |
|
) |
|
else: |
|
repo_name = training_args.hub_model_id |
|
create_repo(repo_name, exist_ok=True, token=training_args.hub_token) |
|
repo = Repository(training_args.output_dir, clone_from=repo_name, token=training_args.hub_token) |
|
|
|
|
|
raw_datasets = DatasetDict() |
|
|
|
if training_args.do_train: |
|
raw_datasets["train"] = load_dataset( |
|
data_args.dataset_name, |
|
data_args.dataset_config_name, |
|
split=data_args.train_split_name, |
|
cache_dir=data_args.dataset_cache_dir, |
|
use_auth_token=True if model_args.use_auth_token else None, |
|
) |
|
|
|
if training_args.do_eval: |
|
raw_datasets["eval"] = load_dataset( |
|
data_args.dataset_name, |
|
data_args.dataset_config_name, |
|
split=data_args.eval_split_name, |
|
cache_dir=data_args.dataset_cache_dir, |
|
use_auth_token=True if model_args.use_auth_token else None, |
|
) |
|
|
|
if not training_args.do_train and not training_args.do_eval: |
|
raise ValueError( |
|
"Cannot not train and not do evaluation. At least one of training or evaluation has to be performed." |
|
) |
|
|
|
if data_args.audio_column_name not in next(iter(raw_datasets.values())).column_names: |
|
raise ValueError( |
|
f"--audio_column_name '{data_args.audio_column_name}' not found in dataset '{data_args.dataset_name}'. " |
|
"Make sure to set `--audio_column_name` to the correct audio column - one of " |
|
f"{', '.join(next(iter(raw_datasets.values())).column_names)}." |
|
) |
|
|
|
if data_args.text_column_name not in next(iter(raw_datasets.values())).column_names: |
|
raise ValueError( |
|
f"--text_column_name {data_args.text_column_name} not found in dataset '{data_args.dataset_name}'. " |
|
"Make sure to set `--text_column_name` to the correct text column - one of " |
|
f"{', '.join(next(iter(raw_datasets.values())).column_names)}." |
|
) |
|
|
|
|
|
config = AutoConfig.from_pretrained( |
|
model_args.config_name if model_args.config_name else model_args.model_name_or_path, |
|
cache_dir=model_args.cache_dir, |
|
revision=model_args.model_revision, |
|
use_auth_token=True if model_args.use_auth_token else None, |
|
) |
|
feature_extractor = AutoFeatureExtractor.from_pretrained( |
|
model_args.feature_extractor_name if model_args.feature_extractor_name else model_args.model_name_or_path, |
|
cache_dir=model_args.cache_dir, |
|
revision=model_args.model_revision, |
|
use_auth_token=True if model_args.use_auth_token else None, |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained( |
|
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, |
|
cache_dir=model_args.cache_dir, |
|
use_fast=model_args.use_fast_tokenizer, |
|
revision=model_args.model_revision, |
|
use_auth_token=True if model_args.use_auth_token else None, |
|
) |
|
|
|
model = FlaxAutoModelForSpeechSeq2Seq.from_pretrained( |
|
model_args.model_name_or_path, |
|
config=config, |
|
dtype=getattr(jnp, model_args.dtype), |
|
cache_dir=model_args.cache_dir, |
|
revision=model_args.model_revision, |
|
use_auth_token=True if model_args.use_auth_token else None, |
|
) |
|
|
|
if model.config.decoder_start_token_id is None: |
|
raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined") |
|
|
|
|
|
|
|
raw_datasets = raw_datasets.cast_column( |
|
data_args.audio_column_name, datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate) |
|
) |
|
|
|
|
|
|
|
max_input_length = int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate) |
|
min_input_length = int(data_args.min_duration_in_seconds * feature_extractor.sampling_rate) |
|
max_label_length = ( |
|
data_args.max_label_length if data_args.max_label_length is not None else model.config.max_length |
|
) |
|
pad_input_to_multiple_of = data_args.pad_input_to_multiple_of |
|
pad_target_to_multiple_of = data_args.pad_target_to_multiple_of |
|
audio_column_name = data_args.audio_column_name |
|
num_workers = data_args.preprocessing_num_workers |
|
text_column_name = data_args.text_column_name |
|
model_input_name = feature_extractor.model_input_names[0] |
|
do_lower_case = data_args.do_lower_case |
|
|
|
if training_args.do_train and data_args.max_train_samples is not None: |
|
raw_datasets["train"] = raw_datasets["train"].select(range(data_args.max_train_samples)) |
|
|
|
if training_args.do_eval and data_args.max_eval_samples is not None: |
|
raw_datasets["eval"] = raw_datasets["eval"].select(range(data_args.max_eval_samples)) |
|
|
|
if data_args.language is not None: |
|
|
|
tokenizer.set_prefix_tokens(language=data_args.language, task=data_args.task) |
|
|
|
def prepare_dataset(batch): |
|
|
|
sample = batch[audio_column_name] |
|
inputs = feature_extractor(sample["array"], sampling_rate=sample["sampling_rate"]) |
|
|
|
batch[model_input_name] = inputs.get(model_input_name)[0] |
|
batch["input_length"] = len(sample["array"]) |
|
|
|
|
|
input_str = batch[text_column_name].lower() if do_lower_case else batch[text_column_name] |
|
batch["labels"] = tokenizer(input_str).input_ids |
|
return batch |
|
|
|
vectorized_datasets = raw_datasets.map( |
|
prepare_dataset, |
|
remove_columns=next(iter(raw_datasets.values())).column_names, |
|
num_proc=num_workers, |
|
desc="preprocess train dataset", |
|
) |
|
|
|
|
|
def is_audio_in_length_range(length): |
|
return min_input_length < length < max_input_length |
|
|
|
vectorized_datasets = vectorized_datasets.filter( |
|
is_audio_in_length_range, |
|
num_proc=num_workers, |
|
input_columns=["input_length"], |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
if data_args.preprocessing_only: |
|
cache = {k: v.cache_files for k, v in vectorized_datasets.items()} |
|
logger.info(f"Data preprocessing finished. Files cached at {cache}.") |
|
return |
|
|
|
|
|
metric = evaluate.load("wer") |
|
|
|
def compute_metrics(preds, labels): |
|
|
|
for idx in range(len(labels)): |
|
labels[idx][labels[idx] == -100] = tokenizer.pad_token_id |
|
|
|
pred_str = tokenizer.batch_decode(preds, skip_special_tokens=True) |
|
|
|
label_str = tokenizer.batch_decode(labels, skip_special_tokens=True) |
|
|
|
wer = metric.compute(predictions=pred_str, references=label_str) |
|
return {"wer": wer} |
|
|
|
|
|
feature_extractor.save_pretrained(training_args.output_dir) |
|
tokenizer.save_pretrained(training_args.output_dir) |
|
config.save_pretrained(training_args.output_dir) |
|
|
|
processor = AutoProcessor.from_pretrained(training_args.output_dir) |
|
|
|
data_collator = FlaxDataCollatorSpeechSeq2SeqWithPadding( |
|
processor=processor, |
|
decoder_start_token_id=model.config.decoder_start_token_id, |
|
input_padding="longest", |
|
target_padding="longest", |
|
max_target_length=max_label_length, |
|
pad_input_to_multiple_of=pad_input_to_multiple_of, |
|
pad_target_to_multiple_of=pad_target_to_multiple_of if pad_target_to_multiple_of else max_label_length, |
|
) |
|
|
|
|
|
has_tensorboard = is_tensorboard_available() |
|
if has_tensorboard and jax.process_index() == 0: |
|
try: |
|
from flax.metrics.tensorboard import SummaryWriter |
|
|
|
summary_writer = SummaryWriter(log_dir=Path(training_args.output_dir)) |
|
except ImportError as ie: |
|
has_tensorboard = False |
|
logger.warning( |
|
f"Unable to display metrics through TensorBoard because some package are not installed: {ie}" |
|
) |
|
else: |
|
logger.warning( |
|
"Unable to display metrics through TensorBoard because the package is not installed: " |
|
"Please run pip install tensorboard to enable." |
|
) |
|
|
|
|
|
rng = jax.random.PRNGKey(training_args.seed) |
|
rng, dropout_rng = jax.random.split(rng) |
|
|
|
|
|
num_epochs = int(training_args.num_train_epochs) |
|
train_batch_size = int(training_args.per_device_train_batch_size) * jax.device_count() |
|
per_device_eval_batch_size = int(training_args.per_device_eval_batch_size) |
|
eval_batch_size = per_device_eval_batch_size * jax.device_count() |
|
steps_per_epoch = len(vectorized_datasets["train"]) // train_batch_size |
|
total_train_steps = steps_per_epoch * num_epochs |
|
|
|
|
|
linear_decay_lr_schedule_fn = create_learning_rate_fn( |
|
len(vectorized_datasets["train"]), |
|
training_args.warmup_steps, |
|
training_args.learning_rate, |
|
) |
|
|
|
|
|
|
|
|
|
|
|
def decay_mask_fn(params): |
|
flat_params = traverse_util.flatten_dict(params) |
|
|
|
layer_norm_candidates = ["layer_norm", "self_attn_layer_norm", "final_layer_norm", "encoder_attn_layer_norm"] |
|
layer_norm_named_params = { |
|
layer[-2:] |
|
for layer_norm_name in layer_norm_candidates |
|
for layer in flat_params.keys() |
|
if layer_norm_name in "".join(layer).lower() |
|
} |
|
flat_mask = {path: (path[-1] != "bias" and path[-2:] not in layer_norm_named_params) for path in flat_params} |
|
return traverse_util.unflatten_dict(flat_mask) |
|
|
|
|
|
adamw = optax.adamw( |
|
learning_rate=linear_decay_lr_schedule_fn, |
|
b1=training_args.adam_beta1, |
|
b2=training_args.adam_beta2, |
|
eps=training_args.adam_epsilon, |
|
weight_decay=training_args.weight_decay, |
|
mask=decay_mask_fn, |
|
) |
|
|
|
|
|
state = TrainState.create(apply_fn=model.__call__, params=model.params, tx=adamw, dropout_rng=dropout_rng) |
|
|
|
|
|
def loss_fn(logits, labels, label_smoothing_factor=0.0): |
|
""" |
|
The label smoothing implementation is adapted from Flax's official example: |
|
https://github.com/google/flax/blob/87a211135c6a377c8f29048a1cac3840e38b9da4/examples/wmt/train.py#L104 |
|
""" |
|
vocab_size = logits.shape[-1] |
|
confidence = 1.0 - label_smoothing_factor |
|
low_confidence = (1.0 - confidence) / (vocab_size - 1) |
|
normalizing_constant = -( |
|
confidence * jnp.log(confidence) + (vocab_size - 1) * low_confidence * jnp.log(low_confidence + 1e-20) |
|
) |
|
soft_labels = onehot(labels, vocab_size, on_value=confidence, off_value=low_confidence) |
|
|
|
loss = optax.softmax_cross_entropy(logits, soft_labels) |
|
loss = loss - normalizing_constant |
|
|
|
|
|
padding_mask = labels >= 0 |
|
loss = loss * padding_mask |
|
loss = loss.sum() |
|
num_labels = padding_mask.sum() |
|
return loss, num_labels |
|
|
|
|
|
def train_step(state, batch, label_smoothing_factor=0.0): |
|
dropout_rng, new_dropout_rng = jax.random.split(state.dropout_rng) |
|
|
|
def compute_loss(params): |
|
labels = batch.pop("labels") |
|
logits = state.apply_fn(**batch, params=params, dropout_rng=dropout_rng, train=True)[0] |
|
loss, num_labels = loss_fn(logits, labels, label_smoothing_factor) |
|
return loss, num_labels |
|
|
|
grad_fn = jax.value_and_grad(compute_loss, has_aux=True) |
|
(loss, num_labels), grad = grad_fn(state.params) |
|
num_labels = jax.lax.psum(num_labels, "batch") |
|
|
|
|
|
loss = jax.lax.psum(loss, "batch") |
|
loss = jax.tree_util.tree_map(lambda x: x / num_labels, loss) |
|
|
|
|
|
grad = jax.lax.psum(grad, "batch") |
|
grad = jax.tree_util.tree_map(lambda x: x / num_labels, grad) |
|
new_state = state.apply_gradients(grads=grad, dropout_rng=new_dropout_rng) |
|
|
|
metrics = {"loss": loss, "learning_rate": linear_decay_lr_schedule_fn(state.step)} |
|
return new_state, metrics |
|
|
|
|
|
def eval_step(params, batch, label_smoothing_factor=0.0): |
|
labels = batch.pop("labels") |
|
logits = model(**batch, params=params, train=False)[0] |
|
|
|
loss, num_labels = loss_fn(logits, labels, label_smoothing_factor) |
|
num_labels = jax.lax.psum(num_labels, "batch") |
|
|
|
|
|
loss = jax.lax.psum(loss, "batch") |
|
loss = jax.tree_util.tree_map(lambda x: x / num_labels, loss) |
|
|
|
metrics = {"loss": loss} |
|
return metrics |
|
|
|
|
|
num_beams = model_args.num_beams if model_args.num_beams is not None else model.config.num_beams |
|
gen_kwargs = {"max_length": max_label_length, "num_beams": num_beams} |
|
|
|
def generate_step(params, batch): |
|
model.params = params |
|
output_ids = model.generate(batch[model_input_name], attention_mask=batch.get("attention_mask"), **gen_kwargs) |
|
return output_ids.sequences |
|
|
|
|
|
p_train_step = jax.pmap( |
|
partial(train_step, label_smoothing_factor=training_args.label_smoothing_factor), "batch", donate_argnums=(0,) |
|
) |
|
p_eval_step = jax.pmap(partial(eval_step, label_smoothing_factor=training_args.label_smoothing_factor), "batch") |
|
p_generate_step = jax.pmap(generate_step, "batch") |
|
|
|
|
|
state = state.replicate() |
|
|
|
logger.info("***** Running training *****") |
|
logger.info(f" Num examples = {len(vectorized_datasets['train'])}") |
|
logger.info(f" Num Epochs = {num_epochs}") |
|
logger.info(f" Instantaneous batch size per device = {training_args.per_device_train_batch_size}") |
|
logger.info(f" Total train batch size (w. parallel & distributed) = {train_batch_size}") |
|
logger.info(f" Total optimization steps = {total_train_steps}") |
|
|
|
train_time = 0 |
|
epochs = tqdm(range(num_epochs), desc=f"Epoch ... (1/{num_epochs})", position=0) |
|
for epoch in epochs: |
|
|
|
train_start = time.time() |
|
|
|
train_metrics = [] |
|
|
|
|
|
vectorized_datasets["train"] = vectorized_datasets["train"].shuffle(training_args.seed) |
|
train_loader = DataLoader( |
|
vectorized_datasets["train"], |
|
batch_size=train_batch_size, |
|
drop_last=True, |
|
collate_fn=data_collator, |
|
num_workers=training_args.dataloader_num_workers, |
|
) |
|
|
|
for batch in tqdm(train_loader, desc="Training...", position=1, leave=False): |
|
batch = shard(batch.data) |
|
state, train_metric = p_train_step(state, batch) |
|
train_metrics.append(train_metric) |
|
|
|
train_time += time.time() - train_start |
|
|
|
train_metric = unreplicate(train_metric) |
|
|
|
epochs.write( |
|
f"Epoch... ({epoch + 1}/{num_epochs} | Loss: {train_metric['loss']}, Learning Rate:" |
|
f" {train_metric['learning_rate']})" |
|
) |
|
|
|
|
|
eval_metrics = [] |
|
eval_preds = [] |
|
eval_labels = [] |
|
|
|
eval_loader = DataLoader( |
|
vectorized_datasets["eval"], |
|
batch_size=eval_batch_size, |
|
drop_last=False, |
|
collate_fn=data_collator, |
|
num_workers=training_args.dataloader_num_workers, |
|
) |
|
for batch in tqdm(eval_loader, desc="Evaluating...", position=2, leave=False): |
|
|
|
labels = batch["labels"] |
|
|
|
metrics = pad_shard_unpad(p_eval_step, static_return=True)( |
|
state.params, batch.data, min_device_batch=per_device_eval_batch_size |
|
) |
|
eval_metrics.append(metrics) |
|
|
|
|
|
if training_args.predict_with_generate: |
|
generated_ids = pad_shard_unpad(p_generate_step)(state.params, batch.data) |
|
eval_preds.extend(jax.device_get(generated_ids.reshape(-1, gen_kwargs["max_length"]))) |
|
eval_labels.extend(labels) |
|
|
|
|
|
eval_metrics = get_metrics(eval_metrics) |
|
eval_metrics = jax.tree_util.tree_map(jnp.mean, eval_metrics) |
|
|
|
|
|
wer_desc = "" |
|
if training_args.predict_with_generate: |
|
wer_metric = compute_metrics(eval_preds, eval_labels) |
|
eval_metrics.update(wer_metric) |
|
wer_desc = " ".join([f"Eval {key}: {value} |" for key, value in wer_metric.items()]) |
|
|
|
|
|
desc = f"Epoch... ({epoch + 1}/{num_epochs} | Eval Loss: {eval_metrics['loss']} | {wer_desc})" |
|
epochs.write(desc) |
|
epochs.desc = desc |
|
|
|
|
|
if has_tensorboard and jax.process_index() == 0: |
|
cur_step = epoch * (len(vectorized_datasets["train"]) // train_batch_size) |
|
write_metric(summary_writer, train_metrics, eval_metrics, train_time, cur_step) |
|
|
|
|
|
if jax.process_index() == 0: |
|
params = jax.device_get(jax.tree_util.tree_map(lambda x: x[0], state.params)) |
|
model.save_pretrained(training_args.output_dir, params=params) |
|
tokenizer.save_pretrained(training_args.output_dir) |
|
if training_args.push_to_hub: |
|
repo.push_to_hub(commit_message=f"Saving weights and logs of epoch {epoch}", blocking=False) |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|
|
|