sanchit-gandhi HF staff commited on
Commit
1283f53
β€’
1 Parent(s): 269164c

Training in progress, step 500

Browse files
Files changed (32) hide show
  1. .gitattributes +1 -2
  2. config.json +1 -1
  3. pytorch_model.bin +1 -1
  4. run_xtreme_s.py +0 -948
  5. run_xtreme_s.py +1 -0
  6. runs/May03_17-15-22_sanchit--v100/events.out.tfevents.1651598399.sanchit--v100.42111.0 +2 -2
  7. wandb/run-20220503_171959-a6039xud/files/output.log β†’ runs/May04_08-29-27_sanchit--v100/1651653030.564084/events.out.tfevents.1651653030.sanchit--v100.48541.1 +2 -2
  8. wandb/run-20220503_171959-a6039xud/run-a6039xud.wandb β†’ runs/May04_08-29-27_sanchit--v100/events.out.tfevents.1651653030.sanchit--v100.48541.0 +2 -2
  9. runs/May04_13-30-37_sanchit--v100/1651674088.8879716/events.out.tfevents.1651674088.sanchit--v100.50375.1 +3 -0
  10. runs/May04_13-30-37_sanchit--v100/events.out.tfevents.1651674088.sanchit--v100.50375.0 +3 -0
  11. sweep.yaml +2 -2
  12. training_args.bin +1 -1
  13. wandb/debug-cli.log +29 -108
  14. wandb/debug-internal.log +1 -1
  15. wandb/debug.log +1 -1
  16. wandb/latest-run +1 -1
  17. wandb/run-20220503_171959-a6039xud/files/wandb-summary.json +0 -0
  18. wandb/run-20220503_171959-a6039xud/logs/debug-internal.log +0 -0
  19. wandb/{run-20220503_171959-a6039xud β†’ run-20220504_142129-1tmxz74i}/files/config.yaml +9 -9
  20. wandb/run-20220504_142129-1tmxz74i/files/output.log +0 -0
  21. wandb/{run-20220503_171959-a6039xud β†’ run-20220504_142129-1tmxz74i}/files/requirements.txt +0 -0
  22. wandb/{run-20220503_171959-a6039xud β†’ run-20220504_142129-1tmxz74i}/files/wandb-metadata.json +7 -7
  23. wandb/run-20220504_142129-1tmxz74i/files/wandb-summary.json +0 -0
  24. wandb/run-20220504_142129-1tmxz74i/logs/debug-internal.log +0 -0
  25. wandb/{run-20220503_171959-a6039xud β†’ run-20220504_142129-1tmxz74i}/logs/debug.log +26 -26
  26. wandb/run-20220504_142129-1tmxz74i/run-1tmxz74i.wandb +3 -0
  27. wandb/{sweep-y3ak427l/config-irggvkgd.yaml β†’ sweep-pvyx3mpp/config-1tmxz74i.yaml} +5 -5
  28. wandb/{sweep-39ci3gkf/config-a6039xud.yaml β†’ sweep-pvyx3mpp/config-o7jpar4x.yaml} +4 -4
  29. wandb/{sweep-y3ak427l/config-ldsojzle.yaml β†’ sweep-pvyx3mpp/config-qk3ze7ok.yaml} +5 -5
  30. wandb/sweep-y3ak427l/config-qv3vjr6j.yaml +0 -44
  31. wandb/sweep-y3ak427l/config-vz5ppd75.yaml +0 -44
  32. wandb/sweep-y3ak427l/config-xur584bd.yaml +0 -44
.gitattributes CHANGED
@@ -26,5 +26,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
26
  *.zip filter=lfs diff=lfs merge=lfs -text
27
  *.zstandard filter=lfs diff=lfs merge=lfs -text
28
  *tfevents* filter=lfs diff=lfs merge=lfs -text
29
- wandb/run-20220503_171959-a6039xud/run-a6039xud.wandb filter=lfs diff=lfs merge=lfs -text
30
- wandb/run-20220503_171959-a6039xud/files/output.log filter=lfs diff=lfs merge=lfs -text
 
26
  *.zip filter=lfs diff=lfs merge=lfs -text
27
  *.zstandard filter=lfs diff=lfs merge=lfs -text
28
  *tfevents* filter=lfs diff=lfs merge=lfs -text
29
+ wandb/run-20220504_142129-1tmxz74i/run-1tmxz74i.wandb filter=lfs diff=lfs merge=lfs -text
 
config.json CHANGED
@@ -182,7 +182,7 @@
182
  "forced_eos_token_id": null,
183
  "gradient_checkpointing": false,
184
  "hidden_act": "gelu",
185
- "hidden_dropout": 0.06862889720223829,
186
  "hidden_size": 1024,
187
  "id2label": {
188
  "0": "LABEL_0",
 
182
  "forced_eos_token_id": null,
183
  "gradient_checkpointing": false,
184
  "hidden_act": "gelu",
185
+ "hidden_dropout": 0.035938233699532036,
186
  "hidden_size": 1024,
187
  "id2label": {
188
  "0": "LABEL_0",
pytorch_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:4d0b1b51e27450f198f132a91c3b3413103c76e8e42117405a269af001d2f25d
3
  size 2353867057
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3169ffb69bc1bf8ff1d3e2d588851055b41795e3c440682f891ae9cfb4eb653a
3
  size 2353867057
run_xtreme_s.py DELETED
@@ -1,948 +0,0 @@
1
- #!/usr/bin/env python
2
- # coding=utf-8
3
- # Copyright 2022 The HuggingFace Inc. team. All rights reserved.
4
- #
5
- # Licensed under the Apache License, Version 2.0 (the "License");
6
- # you may not use this file except in compliance with the License.
7
- # You may obtain a copy of the License at
8
- #
9
- # http://www.apache.org/licenses/LICENSE-2.0
10
- #
11
- # Unless required by applicable law or agreed to in writing, software
12
- # distributed under the License is distributed on an "AS IS" BASIS,
13
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
- # See the License for the specific language governing permissions and
15
-
16
- """ Fine-tuning a πŸ€— Transformers pretrained speech model on the XTREME-S benchmark tasks"""
17
-
18
- import json
19
- import logging
20
- import os
21
- import re
22
- import sys
23
- from collections import OrderedDict, defaultdict
24
- from dataclasses import dataclass, field
25
- from typing import Dict, List, Optional, Union
26
-
27
- import datasets
28
- import numpy as np
29
- import torch
30
- from datasets import DatasetDict, load_dataset, load_metric
31
-
32
- import transformers
33
- from transformers import (
34
- AutoConfig,
35
- AutoFeatureExtractor,
36
- AutoModelForAudioClassification,
37
- AutoModelForCTC,
38
- AutoModelForSpeechSeq2Seq,
39
- AutoProcessor,
40
- AutoTokenizer,
41
- HfArgumentParser,
42
- Seq2SeqTrainer,
43
- Seq2SeqTrainingArguments,
44
- SpeechEncoderDecoderModel,
45
- Trainer,
46
- set_seed,
47
- )
48
- from transformers.trainer_utils import get_last_checkpoint, is_main_process
49
- from transformers.utils import check_min_version
50
- from transformers.utils.versions import require_version
51
-
52
-
53
- # Will error if the minimal version of Transformers is not installed. Remove at your own risks.
54
- check_min_version("4.18.0.dev0")
55
-
56
- require_version("datasets>=1.18.0", "To fix: pip install -r examples/pytorch/speech-recognition/requirements.txt")
57
-
58
-
59
- logger = logging.getLogger(__name__)
60
-
61
-
62
- def list_field(default=None, metadata=None):
63
- return field(default_factory=lambda: default, metadata=metadata)
64
-
65
-
66
- TASK_TO_TARGET_COLUMN_NAME = {
67
- "fleurs-asr": "transcription",
68
- "fleurs-lang_id": "lang_id",
69
- "mls": "transcription",
70
- "voxpopuli": "transcription",
71
- "covost2": "translation",
72
- "minds14": "intent_class",
73
- "babel": "transcription",
74
- }
75
-
76
-
77
- @dataclass
78
- class ModelArguments:
79
- """
80
- Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
81
- """
82
-
83
- model_name_or_path: str = field(
84
- metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
85
- )
86
- tokenizer_name_or_path: Optional[str] = field(
87
- default=None,
88
- metadata={"help": "Path to pretrained tokenizer or tokenizer identifier from huggingface.co/models"},
89
- )
90
- cache_dir: Optional[str] = field(
91
- default=None,
92
- metadata={
93
- "help": "Where do you want to store the pretrained models and datasets downloaded from " "huggingface.co"
94
- },
95
- )
96
- freeze_feature_encoder: bool = field(
97
- default=True, metadata={"help": "Whether to freeze the feature encoder layers of the model."}
98
- )
99
- attention_dropout: float = field(
100
- default=0.0, metadata={"help": "The dropout ratio for the attention probabilities."}
101
- )
102
- activation_dropout: float = field(
103
- default=0.0, metadata={"help": "The dropout ratio for activations inside the fully connected layer."}
104
- )
105
- feat_proj_dropout: float = field(default=0.0, metadata={"help": "The dropout ratio for the projected features."})
106
- hidden_dropout: float = field(
107
- default=0.0,
108
- metadata={
109
- "help": "The dropout probability for all fully connected layers in the embeddings, encoder, and pooler."
110
- },
111
- )
112
- final_dropout: float = field(
113
- default=0.0,
114
- metadata={"help": "The dropout probability for the final projection layer."},
115
- )
116
- mask_time_prob: float = field(
117
- default=0.05,
118
- metadata={
119
- "help": "Probability of each feature vector along the time axis to be chosen as the start of the vector"
120
- "span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature"
121
- "vectors will be masked along the time axis."
122
- },
123
- )
124
- mask_time_length: int = field(
125
- default=10,
126
- metadata={"help": "Length of vector span to mask along the time axis."},
127
- )
128
- mask_feature_prob: float = field(
129
- default=0.0,
130
- metadata={
131
- "help": "Probability of each feature vector along the feature axis to be chosen as the start of the vector"
132
- "span to be masked. Approximately ``mask_feature_prob * sequence_length // mask_feature_length`` feature bins will be masked along the time axis."
133
- },
134
- )
135
- mask_feature_length: int = field(
136
- default=10,
137
- metadata={"help": "Length of vector span to mask along the feature axis."},
138
- )
139
- layerdrop: float = field(default=0.0, metadata={"help": "The LayerDrop probability."})
140
- ctc_zero_infinity: bool = field(
141
- default=False,
142
- metadata={"help": "Whether to zero infinite losses and the associated gradients of `torch.nn.CTCLoss`."},
143
- )
144
- ctc_loss_reduction: Optional[str] = field(
145
- default="mean", metadata={"help": "The way the ctc loss should be reduced. Should be one of 'mean' or 'sum'."}
146
- )
147
-
148
-
149
- @dataclass
150
- class DataTrainingArguments:
151
- """
152
- Arguments pertaining to what data we are going to input our model for training and eval.
153
-
154
- Using `HfArgumentParser` we can turn this class
155
- into argparse arguments to be able to specify them on
156
- the command line.
157
- """
158
-
159
- dataset_name: str = field(
160
- default="google/xtreme_s",
161
- metadata={"help": "The name of the dataset to use (via the datasets library). Defaults to 'google/xtreme_s'"},
162
- )
163
- task: str = field(
164
- default=None,
165
- metadata={
166
- "help": "The task name of the benchmark to use (via the datasets library). Should be on of: "
167
- "'fleurs-asr', 'mls', 'voxpopuli', 'covost2', 'minds14', 'fleurs-lang_id', 'babel'."
168
- },
169
- )
170
- language: str = field(
171
- default="all",
172
- metadata={"help": "The language id as defined in the datasets config name or `all` for all languages."},
173
- )
174
- language_group: str = field(
175
- default=None,
176
- metadata={
177
- "help": "The language group to select a subset of languages to train on. "
178
- "This option is only used the 'fleurs-asr' task. Should be one of: "
179
- "'western_european_we', 'eastern_european_ee', 'central_asia_middle_north_african_cmn', "
180
- "'sub_saharan_african_ssa', 'south_asian_sa', 'south_east_asian_sea', 'chinese_japanase_korean_cjk'."
181
- },
182
- )
183
- train_split_name: str = field(
184
- default="train",
185
- metadata={
186
- "help": "The name of the training dataset split to use (via the datasets library). Defaults to 'train'"
187
- },
188
- )
189
- eval_split_name: str = field(
190
- default="validation",
191
- metadata={
192
- "help": "The name of the evaluation dataset split to use (via the datasets library). "
193
- "Defaults to 'validation'"
194
- },
195
- )
196
- predict_split_name: str = field(
197
- default="test",
198
- metadata={
199
- "help": "The name of the prediction dataset split to use (via the datasets library). " "Defaults to 'test'"
200
- },
201
- )
202
- audio_column_name: str = field(
203
- default="audio",
204
- metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"},
205
- )
206
- target_column_name: str = field(
207
- default=None,
208
- metadata={
209
- "help": "The name of the dataset column containing the target data "
210
- "(transcription/translation/label). If None, the name will be inferred from the task. Defaults to None."
211
- },
212
- )
213
- overwrite_cache: bool = field(
214
- default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."}
215
- )
216
- preprocessing_num_workers: Optional[int] = field(
217
- default=None,
218
- metadata={"help": "The number of processes to use for the preprocessing."},
219
- )
220
- max_train_samples: Optional[int] = field(
221
- default=None,
222
- metadata={
223
- "help": "For debugging purposes or quicker training, truncate the number of training examples to this "
224
- "value if set."
225
- },
226
- )
227
- max_eval_samples: Optional[int] = field(
228
- default=None,
229
- metadata={
230
- "help": "For debugging purposes or quicker training, truncate the number of validation examples to this "
231
- "value if set."
232
- },
233
- )
234
- max_predict_samples: Optional[int] = field(
235
- default=None,
236
- metadata={
237
- "help": "For debugging purposes or quicker training, truncate the number of prediction examples to this "
238
- "value if set."
239
- },
240
- )
241
- chars_to_ignore: Optional[List[str]] = list_field(
242
- default=', ? . ! - ; : " β€œ % β€˜ ” οΏ½'.split(" "),
243
- metadata={"help": "A list of characters to remove from the transcripts."},
244
- )
245
- max_duration_in_seconds: float = field(
246
- default=30.0,
247
- metadata={
248
- "help": "Filter audio files that are longer than `max_duration_in_seconds` seconds to 'max_duration_in_seconds`"
249
- },
250
- )
251
- min_duration_in_seconds: float = field(
252
- default=0.0, metadata={"help": "Filter audio files that are shorter than `min_duration_in_seconds` seconds"}
253
- )
254
- preprocessing_only: bool = field(
255
- default=False,
256
- metadata={
257
- "help": "Whether to only do data preprocessing and skip training. "
258
- "This is especially useful when data preprocessing errors out in distributed training due to timeout. "
259
- "In this case, one should run the preprocessing in a non-distributed setup with `preprocessing_only=True` "
260
- "so that the cached datasets can consequently be loaded in distributed training"
261
- },
262
- )
263
- use_auth_token: bool = field(
264
- default=False,
265
- metadata={
266
- "help": "If :obj:`True`, will use the token generated when running"
267
- ":obj:`transformers-cli login` as HTTP bearer authorization for remote files."
268
- },
269
- )
270
- unk_token: str = field(
271
- default="[UNK]",
272
- metadata={"help": "The unk token for the tokenizer"},
273
- )
274
- pad_token: str = field(
275
- default="[PAD]",
276
- metadata={"help": "The padding token for the tokenizer"},
277
- )
278
- word_delimiter_token: str = field(
279
- default="|",
280
- metadata={"help": "The word delimiter token for the tokenizer"},
281
- )
282
- phoneme_language: Optional[str] = field(
283
- default=None,
284
- metadata={
285
- "help": "The target language that should be used be"
286
- " passed to the tokenizer for tokenization. Note that"
287
- " this is only relevant if the model classifies the"
288
- " input audio to a sequence of phoneme sequences."
289
- },
290
- )
291
- per_lang_metrics: bool = field(
292
- default=True,
293
- metadata={
294
- "help": "If `True`, compute the test metrics separately for each language, and average the results. "
295
- "If `False` compute the average test metrics in a single pass for all languages at once."
296
- },
297
- )
298
-
299
-
300
- @dataclass
301
- class SpeechDataCollatorWithPadding:
302
-
303
- processor: AutoProcessor
304
- decoder_start_token_id: Optional[int] = None
305
- padding: Union[bool, str] = "longest"
306
- pad_labels: Optional[int] = True
307
- pad_to_multiple_of: Optional[int] = None
308
- pad_to_multiple_of_labels: Optional[int] = None
309
-
310
- def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
311
- # split inputs and labels since they have to be of different lenghts and need
312
- # different padding methods
313
- input_features = [{"input_values": feature["input_values"]} for feature in features]
314
-
315
- batch = self.processor.pad(
316
- input_features,
317
- padding=self.padding,
318
- pad_to_multiple_of=self.pad_to_multiple_of,
319
- return_tensors="pt",
320
- )
321
-
322
- if self.pad_labels:
323
- label_features = [{"input_ids": feature["labels"]} for feature in features]
324
- with self.processor.as_target_processor():
325
- labels_batch = self.processor.pad(
326
- label_features,
327
- padding=self.padding,
328
- pad_to_multiple_of=self.pad_to_multiple_of_labels,
329
- return_tensors="pt",
330
- )
331
-
332
- # replace padding with -100 to ignore loss correctly
333
- labels = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1), -100)
334
-
335
- # if bos token is appended in previous tokenization step,
336
- # cut bos token here as it's append later anyways
337
- if (
338
- self.decoder_start_token_id is not None
339
- and (labels[:, 0] == self.decoder_start_token_id).all().cpu().item()
340
- ):
341
- labels = labels[:, 1:]
342
-
343
- batch["labels"] = labels
344
- else:
345
- batch["labels"] = torch.tensor([feature["labels"] for feature in features])
346
-
347
- return batch
348
-
349
-
350
- def create_vocabulary_from_data(
351
- datasets: DatasetDict,
352
- word_delimiter_token: Optional[str] = None,
353
- unk_token: Optional[str] = None,
354
- pad_token: Optional[str] = None,
355
- ):
356
- # Given training and test labels create vocabulary
357
- def extract_all_chars(batch):
358
- all_text = " ".join(batch["target_text"])
359
- vocab = list(set(all_text))
360
- return {"vocab": [vocab], "all_text": [all_text]}
361
-
362
- vocabs = datasets.map(
363
- extract_all_chars,
364
- batched=True,
365
- batch_size=-1,
366
- keep_in_memory=True,
367
- remove_columns=datasets["train"].column_names,
368
- )
369
-
370
- # take union of all unique characters in each dataset
371
- vocab_set = (
372
- (set(vocabs["train"]["vocab"][0]) if "train" in vocabs else set())
373
- | (set(vocabs["eval"]["vocab"][0]) if "eval" in vocabs else set())
374
- | (set(vocabs["predict"]["vocab"][0]) if "predict" in vocabs else set())
375
- )
376
-
377
- vocab_dict = {v: k for k, v in enumerate(sorted(list(vocab_set)))}
378
-
379
- # replace white space with delimiter token
380
- if word_delimiter_token is not None:
381
- vocab_dict[word_delimiter_token] = vocab_dict[" "]
382
- del vocab_dict[" "]
383
-
384
- # add unk and pad token
385
- if unk_token is not None:
386
- vocab_dict[unk_token] = len(vocab_dict)
387
-
388
- if pad_token is not None:
389
- vocab_dict[pad_token] = len(vocab_dict)
390
-
391
- return vocab_dict
392
-
393
-
394
- def main():
395
- # See all possible arguments in src/transformers/training_args.py
396
- # or by passing the --help flag to this script.
397
- # We now keep distinct sets of args, for a cleaner separation of concerns.
398
-
399
- parser = HfArgumentParser((ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments))
400
- if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
401
- # If we pass only one argument to the script and it's the path to a json file,
402
- # let's parse it to get our arguments.
403
- model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
404
- else:
405
- model_args, data_args, training_args = parser.parse_args_into_dataclasses()
406
-
407
- # Detecting last checkpoint.
408
- last_checkpoint = None
409
- if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
410
- last_checkpoint = get_last_checkpoint(training_args.output_dir)
411
- if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
412
- raise ValueError(
413
- f"Output directory ({training_args.output_dir}) already exists and is not empty. "
414
- "Use --overwrite_output_dir to overcome."
415
- )
416
- elif last_checkpoint is not None:
417
- logger.info(
418
- f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
419
- "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
420
- )
421
-
422
- # Setup logging
423
- logging.basicConfig(
424
- format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
425
- datefmt="%m/%d/%Y %H:%M:%S",
426
- handlers=[logging.StreamHandler(sys.stdout)],
427
- )
428
- logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN)
429
-
430
- # Log on each process the small summary:
431
- logger.warning(
432
- f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
433
- f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
434
- )
435
- # Set the verbosity to info of the Transformers logger (on main process only):
436
- if is_main_process(training_args.local_rank):
437
- transformers.utils.logging.set_verbosity_info()
438
- logger.info("Training/evaluation parameters %s", training_args)
439
-
440
- # Set seed before initializing model.
441
- set_seed(training_args.seed)
442
-
443
- # 1. First, let's load the dataset
444
- raw_datasets = DatasetDict()
445
- task_name = data_args.task
446
- lang_id = data_args.language
447
-
448
- if task_name is None:
449
- raise ValueError(
450
- "Set --task should be set to '<xtreme_s_task>' " "(e.g. 'fleurs-asr', 'mls', 'covost2', 'minds14') "
451
- )
452
- if lang_id is None:
453
- raise ValueError(
454
- "Set --language should be set to the language id of the sub dataset "
455
- "config to be used (e.g. 'pl', 'en.tr', 'fr-FR') or 'all'"
456
- " for multi-lingual fine-tuning."
457
- )
458
- if data_args.language_group is not None:
459
- if data_args.task != "fleurs-asr":
460
- raise ValueError("--language_group should only be used with --task=fleurs-asr")
461
- if data_args.language != "all":
462
- raise ValueError("--language_group should only be used with --language=all")
463
-
464
- if data_args.target_column_name is None:
465
- target_column_name = TASK_TO_TARGET_COLUMN_NAME[task_name]
466
- else:
467
- target_column_name = data_args.target_column_name
468
-
469
- # here we differentiate between tasks with text as the target and classification tasks
470
- is_text_target = target_column_name in ("transcription", "translation")
471
-
472
- config_name = ".".join([task_name.split("-")[0], lang_id])
473
-
474
- if training_args.do_train:
475
- raw_datasets["train"] = load_dataset(
476
- data_args.dataset_name,
477
- config_name,
478
- split=data_args.train_split_name,
479
- use_auth_token=data_args.use_auth_token,
480
- cache_dir=model_args.cache_dir,
481
- )
482
-
483
- if data_args.audio_column_name not in raw_datasets["train"].column_names:
484
- raise ValueError(
485
- f"--audio_column_name '{data_args.audio_column_name}' not found in dataset '{data_args.dataset_name}'. "
486
- "Make sure to set `--audio_column_name` to the correct audio column - one of "
487
- f"{', '.join(raw_datasets['train'].column_names)}."
488
- )
489
-
490
- if target_column_name not in raw_datasets["train"].column_names:
491
- raise ValueError(
492
- f"--target_column_name {target_column_name} not found in dataset '{data_args.dataset_name}'. "
493
- "Make sure to set `--target_column_name` to the correct text column - one of "
494
- f"{', '.join(raw_datasets['train'].column_names)}."
495
- )
496
-
497
- if data_args.max_train_samples is not None:
498
- raw_datasets["train"] = raw_datasets["train"].select(range(data_args.max_train_samples))
499
-
500
- if training_args.do_eval:
501
- raw_datasets["eval"] = load_dataset(
502
- data_args.dataset_name,
503
- config_name,
504
- split=data_args.eval_split_name,
505
- use_auth_token=data_args.use_auth_token,
506
- cache_dir=model_args.cache_dir,
507
- )
508
-
509
- if data_args.max_eval_samples is not None:
510
- raw_datasets["eval"] = raw_datasets["eval"].select(range(data_args.max_eval_samples))
511
-
512
- if training_args.do_predict:
513
- raw_datasets["predict"] = load_dataset(
514
- data_args.dataset_name,
515
- config_name,
516
- split=data_args.predict_split_name,
517
- use_auth_token=data_args.use_auth_token,
518
- cache_dir=model_args.cache_dir,
519
- )
520
-
521
- if data_args.max_predict_samples is not None:
522
- raw_datasets["predict"] = raw_datasets["predict"].select(range(data_args.max_predict_samples))
523
-
524
- lang_list = next(iter(raw_datasets.values())).features["lang_id"].names
525
- if not is_text_target:
526
- label_list = next(iter(raw_datasets.values())).features[target_column_name].names
527
- num_labels = len(label_list)
528
-
529
- num_workers = data_args.preprocessing_num_workers
530
-
531
- lang_group = data_args.language_group
532
- if lang_group is not None:
533
- with training_args.main_process_first(desc="language group filter"):
534
- lang_group_id = next(iter(raw_datasets.values())).features["lang_group_id"].str2int(lang_group)
535
- raw_datasets = raw_datasets.filter(
536
- lambda lang_group: lang_group == lang_group_id,
537
- num_proc=num_workers,
538
- input_columns=["lang_group_id"],
539
- )
540
-
541
- # 2. We remove some special characters from the datasets
542
- # that make training complicated and do not help in transcribing the speech
543
- # E.g. characters, such as `,` and `.` do not really have an acoustic characteristic
544
- # that could be easily picked up by the model
545
- chars_to_ignore_regex = (
546
- f'[{"".join(data_args.chars_to_ignore)}]' if data_args.chars_to_ignore is not None else None
547
- )
548
-
549
- def remove_special_characters(batch):
550
- if chars_to_ignore_regex is not None:
551
- batch["target_text"] = re.sub(chars_to_ignore_regex, "", batch[target_column_name]).lower()
552
- else:
553
- batch["target_text"] = batch[target_column_name].lower()
554
- return batch
555
-
556
- if is_text_target:
557
- with training_args.main_process_first(desc="dataset map special characters removal"):
558
- raw_datasets = raw_datasets.map(
559
- remove_special_characters,
560
- remove_columns=[target_column_name],
561
- desc="remove special characters from datasets",
562
- )
563
-
564
- # save special tokens for tokenizer
565
- word_delimiter_token = data_args.word_delimiter_token
566
- unk_token = data_args.unk_token
567
- pad_token = data_args.pad_token
568
-
569
-
570
- encoder_id = "facebook/wav2vec2-xls-r-300m"
571
- decoder_id = "facebook/bart-large"
572
-
573
- model = SpeechEncoderDecoderModel.from_encoder_decoder_pretrained(encoder_id, decoder_id, encoder_add_adapter=True)
574
- model.config.encoder.feat_proj_dropout = 0.0
575
- model.config.encoder.final_dropout = 0.0
576
- model.config.encoder.mask_time_prob = 0.1
577
- model.config.decoder_start_token_id = model.decoder.config.bos_token_id
578
- model.config.pad_token_id = model.decoder.config.pad_token_id
579
- model.config.eos_token_id = model.decoder.config.eos_token_id
580
- model.config.max_length = 40
581
- model.config.num_beams = 1
582
- model.config.encoder.layerdrop = 0.0
583
- model.config.use_cache = False
584
- model.config.processor_class = "Wav2Vec2Processor"
585
-
586
- model.save_pretrained(model_args.model_name_or_path)
587
-
588
- feature_etxractor = AutoFeatureExtractor.from_pretrained(encoder_id)
589
- feature_etxractor.save_pretrained(model_args.model_name_or_path)
590
- tokenizer = AutoTokenizer.from_pretrained(decoder_id)
591
- tokenizer.save_pretrained(model_args.model_name_or_path)
592
-
593
- # 3. Next, let's load the config as we might need it to create
594
- # the tokenizer
595
- config = AutoConfig.from_pretrained(
596
- model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_auth_token=data_args.use_auth_token
597
- )
598
-
599
- if is_text_target:
600
- # 4. (Optional, for ASR and translation) If no tokenizer file is defined,
601
- # we create the vocabulary of the model by extracting all unique characters from
602
- # the training and evaluation datasets
603
- # We need to make sure that only first rank saves vocabulary
604
- # make sure all processes wait until vocab is created
605
- tokenizer_name_or_path = model_args.tokenizer_name_or_path
606
- tokenizer_kwargs = {}
607
- if tokenizer_name_or_path is None:
608
- # save vocab in training output dir
609
- tokenizer_name_or_path = training_args.output_dir
610
-
611
- vocab_file = os.path.join(tokenizer_name_or_path, "vocab.json")
612
-
613
- with training_args.main_process_first():
614
- if training_args.overwrite_output_dir and os.path.isfile(vocab_file):
615
- os.remove(vocab_file)
616
-
617
- with training_args.main_process_first(desc="dataset map vocabulary creation"):
618
- if not os.path.isfile(vocab_file):
619
- os.makedirs(tokenizer_name_or_path, exist_ok=True)
620
- vocab_dict = create_vocabulary_from_data(
621
- raw_datasets,
622
- word_delimiter_token=word_delimiter_token,
623
- unk_token=unk_token,
624
- pad_token=pad_token,
625
- )
626
-
627
- # save vocab dict to be loaded into tokenizer
628
- with open(vocab_file, "w") as file:
629
- json.dump(vocab_dict, file)
630
-
631
- # if tokenizer has just been created
632
- # it is defined by `tokenizer_class` if present in config else by `model_type`
633
- if not config.is_encoder_decoder:
634
- tokenizer_kwargs = {
635
- "config": config if config.tokenizer_class is not None else None,
636
- "tokenizer_type": config.model_type if config.tokenizer_class is None else None,
637
- "unk_token": unk_token,
638
- "pad_token": pad_token,
639
- "word_delimiter_token": word_delimiter_token,
640
- }
641
- else:
642
- tokenizer_kwargs = {}
643
-
644
- # 5. Now we can instantiate the feature extractor, tokenizer and model
645
- # Note for distributed training, the .from_pretrained methods guarantee that only
646
- # one local process can concurrently download model & vocab.
647
-
648
- # load feature_extractor and tokenizer
649
- if is_text_target:
650
- tokenizer = AutoTokenizer.from_pretrained(
651
- tokenizer_name_or_path,
652
- use_auth_token=data_args.use_auth_token,
653
- **tokenizer_kwargs,
654
- )
655
- feature_extractor = AutoFeatureExtractor.from_pretrained(
656
- model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_auth_token=data_args.use_auth_token
657
- )
658
-
659
- # adapt config
660
- # (speech translation requires pre-configured seq2seq models)
661
- if task_name != "covost2":
662
- config.update(
663
- {
664
- "feat_proj_dropout": model_args.feat_proj_dropout,
665
- "attention_dropout": model_args.attention_dropout,
666
- "hidden_dropout": model_args.hidden_dropout,
667
- "final_dropout": model_args.final_dropout,
668
- "mask_time_prob": model_args.mask_time_prob,
669
- "mask_time_length": model_args.mask_time_length,
670
- "mask_feature_prob": model_args.mask_feature_prob,
671
- "mask_feature_length": model_args.mask_feature_length,
672
- "gradient_checkpointing": training_args.gradient_checkpointing,
673
- "layerdrop": model_args.layerdrop,
674
- "ctc_zero_infinity": model_args.ctc_zero_infinity,
675
- "ctc_loss_reduction": model_args.ctc_loss_reduction,
676
- "activation_dropout": model_args.activation_dropout,
677
- }
678
- )
679
- if training_args.do_train:
680
- if is_text_target:
681
- config.pad_token_id = tokenizer.pad_token_id
682
- config.vocab_size = len(tokenizer)
683
- else:
684
- label_to_id = {v: i for i, v in enumerate(label_list)}
685
- config.label2id = label_to_id
686
- config.id2label = {id: label for label, id in label_to_id.items()}
687
- config.num_labels = num_labels
688
- else:
689
- config.encoder.update({"hidden_dropout": model_args.hidden_dropout})
690
-
691
- # create model
692
- if target_column_name == "transcription":
693
- model = AutoModelForCTC.from_pretrained(
694
- model_args.model_name_or_path,
695
- cache_dir=model_args.cache_dir,
696
- config=config,
697
- use_auth_token=data_args.use_auth_token,
698
- )
699
- elif config.is_encoder_decoder:
700
- model = AutoModelForSpeechSeq2Seq.from_pretrained(
701
- model_args.model_name_or_path,
702
- cache_dir=model_args.cache_dir,
703
- config=config,
704
- use_auth_token=data_args.use_auth_token,
705
- )
706
- if model.config.decoder_start_token_id is None:
707
- raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined")
708
- else:
709
- model = AutoModelForAudioClassification.from_pretrained(
710
- model_args.model_name_or_path,
711
- cache_dir=model_args.cache_dir,
712
- config=config,
713
- use_auth_token=data_args.use_auth_token,
714
- )
715
-
716
- # freeze encoder
717
- if model_args.freeze_feature_encoder:
718
- model.freeze_feature_encoder()
719
-
720
- # 6. Now we preprocess the datasets including loading the audio, resampling and normalization
721
- # Thankfully, `datasets` takes care of automatically loading and resampling the audio,
722
- # so that we just need to set the correct target sampling rate and normalize the input
723
- # via the `feature_extractor`
724
-
725
- # make sure that dataset decodes audio with correct sampling rate
726
- dataset_sampling_rate = next(iter(raw_datasets.values())).features[data_args.audio_column_name].sampling_rate
727
- if dataset_sampling_rate != feature_extractor.sampling_rate:
728
- raw_datasets = raw_datasets.cast_column(
729
- data_args.audio_column_name, datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate)
730
- )
731
-
732
- # derive max & min input length for sample rate & max duration
733
- max_input_length = data_args.max_duration_in_seconds * feature_extractor.sampling_rate
734
- min_input_length = data_args.min_duration_in_seconds * feature_extractor.sampling_rate
735
- audio_column_name = data_args.audio_column_name
736
-
737
- # `phoneme_language` is only relevant if the model is fine-tuned on phoneme classification
738
- phoneme_language = data_args.phoneme_language
739
-
740
- # Preprocessing the datasets.
741
- # We need to read the audio files as arrays and tokenize the targets.
742
- def prepare_dataset(batch):
743
- # load audio
744
- sample = batch[audio_column_name]
745
-
746
- inputs = feature_extractor(sample["array"], sampling_rate=sample["sampling_rate"])
747
- batch["input_values"] = inputs.input_values[0]
748
- batch["length"] = len(batch["input_values"])
749
-
750
- # encode targets
751
- additional_kwargs = {}
752
- if phoneme_language is not None:
753
- additional_kwargs["phonemizer_lang"] = phoneme_language
754
-
755
- if is_text_target:
756
- batch["labels"] = tokenizer(batch["target_text"], **additional_kwargs).input_ids
757
- else:
758
- batch["labels"] = batch[target_column_name]
759
-
760
- batch["lang"] = batch["lang_id"]
761
-
762
- return batch
763
-
764
- with training_args.main_process_first(desc="dataset map preprocessing"):
765
- vectorized_datasets = raw_datasets.map(
766
- prepare_dataset,
767
- remove_columns=next(iter(raw_datasets.values())).column_names,
768
- num_proc=num_workers,
769
- desc="preprocess datasets",
770
- )
771
-
772
- if training_args.do_train:
773
-
774
- def is_audio_in_length_range(length):
775
- return length > min_input_length and length < max_input_length
776
-
777
- # filter data that is shorter than min_input_length
778
- vectorized_datasets["train"] = vectorized_datasets["train"].filter(
779
- is_audio_in_length_range,
780
- num_proc=num_workers,
781
- input_columns=["length"],
782
- )
783
-
784
- # 7. Next, we can prepare for the training step.
785
- # Let's use the appropriate XTREME-S evaluation metric,
786
- # instantiate a data collator and the trainer
787
-
788
- # Define evaluation metrics during training, *i.e.* word error rate, character error rate
789
- eval_metric = load_metric("xtreme_s", task_name)
790
-
791
- # for large datasets it is advised to run the preprocessing on a
792
- # single machine first with ``args.preprocessing_only`` since there will mostly likely
793
- # be a timeout when running the script in distributed mode.
794
- # In a second step ``args.preprocessing_only`` can then be set to `False` to load the
795
- # cached dataset
796
- if data_args.preprocessing_only:
797
- logger.info(f"Data preprocessing finished. Files cached at {vectorized_datasets.cache_files}")
798
- return
799
-
800
- def asr_logits_argmax(logits, labels):
801
- return logits.argmax(dim=-1)
802
-
803
- def compute_asr_metric(pred):
804
- pred.label_ids[pred.label_ids == -100] = tokenizer.pad_token_id
805
-
806
- pred_str = tokenizer.batch_decode(pred.predictions)
807
- # we do not want to group tokens when computing the metrics
808
- label_str = tokenizer.batch_decode(pred.label_ids, group_tokens=False)
809
-
810
- metric = eval_metric.compute(predictions=pred_str, references=label_str)
811
- return metric
812
-
813
- def compute_classification_metric(pred):
814
- pred_ids = np.argmax(pred.predictions, axis=1)
815
- metric = eval_metric.compute(predictions=pred_ids, references=pred.label_ids)
816
- return metric
817
-
818
- # Now save everything to be able to create a single processor later
819
- if is_main_process(training_args.local_rank):
820
- # save feature extractor, tokenizer and config
821
- feature_extractor.save_pretrained(training_args.output_dir)
822
- if is_text_target:
823
- tokenizer.save_pretrained(training_args.output_dir)
824
- config.save_pretrained(training_args.output_dir)
825
- # wait until configs are saved in the main process before loading the processor
826
- if training_args.local_rank != -1:
827
- torch.distributed.barrier()
828
-
829
- if is_text_target:
830
- processor = AutoProcessor.from_pretrained(training_args.output_dir)
831
- else:
832
- processor = AutoFeatureExtractor.from_pretrained(training_args.output_dir)
833
-
834
- # Instantiate custom data collator
835
- data_collator = SpeechDataCollatorWithPadding(processor=processor, pad_labels=is_text_target)
836
-
837
- # Initialize Trainer
838
- if target_column_name == "translation":
839
- trainer = Seq2SeqTrainer(
840
- model=model,
841
- data_collator=data_collator,
842
- args=training_args,
843
- preprocess_logits_for_metrics=asr_logits_argmax if training_args.predict_with_generate else None,
844
- compute_metrics=compute_asr_metric if training_args.predict_with_generate else None,
845
- train_dataset=vectorized_datasets["train"] if training_args.do_train else None,
846
- eval_dataset=vectorized_datasets["eval"] if training_args.do_eval else None,
847
- tokenizer=feature_extractor,
848
- )
849
- else:
850
- trainer = Trainer(
851
- model=model,
852
- data_collator=data_collator,
853
- args=training_args,
854
- preprocess_logits_for_metrics=asr_logits_argmax if is_text_target else None,
855
- compute_metrics=compute_asr_metric if is_text_target else compute_classification_metric,
856
- train_dataset=vectorized_datasets["train"] if training_args.do_train else None,
857
- eval_dataset=vectorized_datasets["eval"] if training_args.do_eval else None,
858
- tokenizer=feature_extractor,
859
- )
860
-
861
- # 8. Finally, we can start training
862
-
863
- # Training
864
- if training_args.do_train:
865
-
866
- # use last checkpoint if exist
867
- if last_checkpoint is not None:
868
- checkpoint = last_checkpoint
869
- elif os.path.isdir(model_args.model_name_or_path):
870
- checkpoint = model_args.model_name_or_path
871
- else:
872
- checkpoint = None
873
-
874
- train_result = trainer.train(resume_from_checkpoint=checkpoint)
875
- trainer.save_model()
876
-
877
- metrics = train_result.metrics
878
- max_train_samples = (
879
- data_args.max_train_samples
880
- if data_args.max_train_samples is not None
881
- else len(vectorized_datasets["train"])
882
- )
883
- metrics["train_samples"] = min(max_train_samples, len(vectorized_datasets["train"]))
884
-
885
- trainer.log_metrics("train", metrics)
886
- trainer.save_metrics("train", metrics)
887
- trainer.save_state()
888
-
889
- # Evaluation on the test set
890
- results = {}
891
- if training_args.do_predict:
892
- logger.info(f"*** Evaluating on the `{data_args.predict_split_name}` set ***")
893
- if data_args.per_lang_metrics:
894
- # separate the `test` dataset into language-specific subsets and compute metrics for each of them
895
- metrics = {}
896
- average_metrics = defaultdict(list)
897
- for lang_id in range(len(lang_list)):
898
- lang_name = lang_list[lang_id]
899
- with training_args.main_process_first(desc="per-language dataset filter"):
900
- lang_dataset = vectorized_datasets["predict"].filter(
901
- lambda lang: lang == lang_id,
902
- num_proc=num_workers,
903
- input_columns=["lang"],
904
- )
905
- lang_metrics = trainer.evaluate(lang_dataset)
906
- redundant_metrics = ["eval_runtime", "eval_samples_per_second", "eval_steps_per_second", "eval_epoch"]
907
- for metric_name, value in lang_metrics.items():
908
- average_metrics[metric_name].append(value)
909
- if metric_name not in redundant_metrics:
910
- metrics[f"{metric_name}_{lang_name}"] = value
911
- for metric_name, value in average_metrics.items():
912
- metrics[metric_name] = np.mean(value)
913
- else:
914
- metrics = trainer.evaluate(vectorized_datasets["predict"])
915
- max_predict_samples = (
916
- data_args.max_predict_samples
917
- if data_args.max_predict_samples is not None
918
- else len(vectorized_datasets["predict"])
919
- )
920
- metrics["predict_samples"] = min(max_predict_samples, len(vectorized_datasets["predict"]))
921
-
922
- # make sure that the `predict` metrics end up in the log history for the model card
923
- trainer.log(OrderedDict(sorted(metrics.items())))
924
-
925
- trainer.log_metrics("predict", metrics)
926
- trainer.save_metrics("predict", metrics)
927
-
928
- # Write model card and (optionally) push to hub
929
- kwargs = {
930
- "finetuned_from": model_args.model_name_or_path,
931
- "tasks": task_name,
932
- "tags": [task_name, data_args.dataset_name],
933
- "dataset_args": f"Config: {config_name}, Training split: {data_args.train_split_name}, Eval split: {data_args.eval_split_name}, Predict split: {data_args.predict_split_name}",
934
- "dataset": f"{data_args.dataset_name.upper()} - {config_name.upper()}",
935
- "language": data_args.language,
936
- }
937
-
938
- if training_args.push_to_hub:
939
- trainer.push_to_hub(**kwargs)
940
- else:
941
- trainer.create_model_card(**kwargs)
942
-
943
- return results
944
-
945
-
946
- if __name__ == "__main__":
947
- main()
948
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
run_xtreme_s.py ADDED
@@ -0,0 +1 @@
 
 
1
+ /home/sanchit_huggingface_co/run_xtreme_s.py
runs/May03_17-15-22_sanchit--v100/events.out.tfevents.1651598399.sanchit--v100.42111.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:1fa91b570736d0c591447238dcb171cfb6539cad40d9ce858fec696f3afac2b0
3
- size 718842
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:06ebac1e97e241e13d6c8a536ad57e3ef5b58c510633a0824a10536aae4662a4
3
+ size 797661
wandb/run-20220503_171959-a6039xud/files/output.log β†’ runs/May04_08-29-27_sanchit--v100/1651653030.564084/events.out.tfevents.1651653030.sanchit--v100.48541.1 RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:c54d8426faeee1b1757c840aed0c33fd5844c004f6e486f877f6deea1c7413fd
3
- size 10696139
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9f818ffc5324af0a19b67e9e869654bb112292ade31d00f48263ec9cf177206c
3
+ size 5184
wandb/run-20220503_171959-a6039xud/run-a6039xud.wandb β†’ runs/May04_08-29-27_sanchit--v100/events.out.tfevents.1651653030.sanchit--v100.48541.0 RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:84cdd08f802f3f87244c71bf27046ed6bcab4d0121e9ce4ff18535e211468109
3
- size 492654377
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6120cfa0b8dd7cc6afe852da88002229769bc8f3efa93f730fa0661088c42d36
3
+ size 88290
runs/May04_13-30-37_sanchit--v100/1651674088.8879716/events.out.tfevents.1651674088.sanchit--v100.50375.1 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aef34e54eaac03ee713590a0eb81b34a1eb839a803375bb6e9e3a6e439991c2b
3
+ size 5184
runs/May04_13-30-37_sanchit--v100/events.out.tfevents.1651674088.sanchit--v100.50375.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0b7bf3b5b1646e5c45627c0e0db5e11e84bd3dad703289f12a20b99abd0ab7cc
3
+ size 88291
sweep.yaml CHANGED
@@ -31,9 +31,9 @@ parameters:
31
  num_train_epochs:
32
  value: 3
33
  per_device_train_batch_size:
34
- value: 4
35
  per_device_eval_batch_size:
36
- value: 4
37
  gradient_accumulation_steps:
38
  value: 8
39
  generation_max_length:
 
31
  num_train_epochs:
32
  value: 3
33
  per_device_train_batch_size:
34
+ value: 8
35
  per_device_eval_batch_size:
36
+ value: 8
37
  gradient_accumulation_steps:
38
  value: 8
39
  generation_max_length:
training_args.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:94e05d5641aa58db52aee32293e970801889668d13a72d205ffa6fe324861d4b
3
  size 3247
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:54311328073baaf4c9576b62de98f28bcc986e980c3c849a9409edd618d1e27f
3
  size 3247
wandb/debug-cli.log CHANGED
@@ -1,6 +1,6 @@
1
- 2022-05-03 17:09:46 INFO Running runs: []
2
- 2022-05-03 17:09:46 INFO Agent received command: run
3
- 2022-05-03 17:09:46 INFO Agent starting run with config:
4
  eval_split_name: test
5
  eval_steps: 500
6
  evaluation_strategy: steps
@@ -8,103 +8,25 @@
8
  generation_num_beams: 1
9
  gradient_accumulation_steps: 8
10
  greater_is_better: True
11
- hidden_dropout: 0.036619638921206475
12
  language: fr.en
13
- learning_rate: 0.00024391819705381628
14
  logging_steps: 1
15
  max_duration_in_seconds: 20
16
  metric_for_best_model: bleu
17
  model_name_or_path: ./
18
  num_train_epochs: 3
19
- output_dir: ./output_dir
20
- per_device_eval_batch_size: 4
21
- per_device_train_batch_size: 4
22
- save_steps: 500
23
- task: covost2
24
- warmup_steps: 500
25
- 2022-05-03 17:09:46 INFO About to run command: python3 run_xtreme_s.py --overwrite_output_dir --freeze_feature_encoder --gradient_checkpointing --predict_with_generate --fp16 --group_by_length --do_train --do_eval --load_best_model_at_end --push_to_hub --use_auth_token --eval_split_name=test --eval_steps=500 --evaluation_strategy=steps --generation_max_length=40 --generation_num_beams=1 --gradient_accumulation_steps=8 --greater_is_better=True --hidden_dropout=0.036619638921206475 --language=fr.en --learning_rate=0.00024391819705381628 --logging_steps=1 --max_duration_in_seconds=20 --metric_for_best_model=bleu --model_name_or_path=./ --num_train_epochs=3 --output_dir=./output_dir --per_device_eval_batch_size=4 --per_device_train_batch_size=4 --save_steps=500 --task=covost2 --warmup_steps=500
26
- 2022-05-03 17:09:51 INFO Running runs: ['vz5ppd75']
27
- 2022-05-03 17:10:26 INFO Cleaning up finished run: vz5ppd75
28
- 2022-05-03 17:10:28 INFO Agent received command: run
29
- 2022-05-03 17:10:28 INFO Agent starting run with config:
30
- eval_split_name: test
31
- eval_steps: 500
32
- evaluation_strategy: steps
33
- generation_max_length: 40
34
- generation_num_beams: 1
35
- gradient_accumulation_steps: 8
36
- greater_is_better: True
37
- hidden_dropout: 0.1875094322808032
38
- language: fr.en
39
- learning_rate: 0.00024438201183496223
40
- logging_steps: 1
41
- max_duration_in_seconds: 20
42
- metric_for_best_model: bleu
43
- model_name_or_path: ./
44
- num_train_epochs: 3
45
- output_dir: ./output_dir
46
- per_device_eval_batch_size: 4
47
- per_device_train_batch_size: 4
48
- save_steps: 500
49
- task: covost2
50
- warmup_steps: 500
51
- 2022-05-03 17:10:36 INFO Running runs: []
52
- 2022-05-03 17:10:36 INFO Agent received command: run
53
- 2022-05-03 17:10:36 INFO Agent starting run with config:
54
- eval_split_name: test
55
- eval_steps: 500
56
- evaluation_strategy: steps
57
- generation_max_length: 40
58
- generation_num_beams: 1
59
- gradient_accumulation_steps: 8
60
- greater_is_better: True
61
- hidden_dropout: 0.055722391000930585
62
- language: fr.en
63
- learning_rate: 0.0006457481677728278
64
- logging_steps: 1
65
- max_duration_in_seconds: 20
66
- metric_for_best_model: bleu
67
- model_name_or_path: ./
68
- num_train_epochs: 3
69
- output_dir: ./output_dir
70
- per_device_eval_batch_size: 4
71
- per_device_train_batch_size: 4
72
- save_steps: 500
73
- task: covost2
74
- warmup_steps: 500
75
- 2022-05-03 17:10:36 INFO About to run command: python3 run_xtreme_s.py --overwrite_output_dir --freeze_feature_encoder --gradient_checkpointing --predict_with_generate --fp16 --group_by_length --do_train --do_eval --load_best_model_at_end --push_to_hub --use_auth_token --eval_split_name=test --eval_steps=500 --evaluation_strategy=steps --generation_max_length=40 --generation_num_beams=1 --gradient_accumulation_steps=8 --greater_is_better=True --hidden_dropout=0.055722391000930585 --language=fr.en --learning_rate=0.0006457481677728278 --logging_steps=1 --max_duration_in_seconds=20 --metric_for_best_model=bleu --model_name_or_path=./ --num_train_epochs=3 --output_dir=./output_dir --per_device_eval_batch_size=4 --per_device_train_batch_size=4 --save_steps=500 --task=covost2 --warmup_steps=500
76
- 2022-05-03 17:10:41 INFO Running runs: ['ldsojzle']
77
- 2022-05-03 17:11:07 INFO Cleaning up finished run: ldsojzle
78
- 2022-05-03 17:11:07 INFO Agent received command: run
79
- 2022-05-03 17:11:07 INFO Agent starting run with config:
80
- eval_split_name: test
81
- eval_steps: 500
82
- evaluation_strategy: steps
83
- generation_max_length: 40
84
- generation_num_beams: 1
85
- gradient_accumulation_steps: 8
86
- greater_is_better: True
87
- hidden_dropout: 0.056807662149569525
88
- language: fr.en
89
- learning_rate: 0.0005558468401613797
90
- logging_steps: 1
91
- max_duration_in_seconds: 20
92
- metric_for_best_model: bleu
93
- model_name_or_path: ./
94
- num_train_epochs: 3
95
- output_dir: ./output_dir
96
- per_device_eval_batch_size: 4
97
- per_device_train_batch_size: 4
98
  save_steps: 500
99
  task: covost2
100
  warmup_steps: 500
101
- 2022-05-03 17:11:07 INFO About to run command: python3 run_xtreme_s.py --overwrite_output_dir --freeze_feature_encoder --gradient_checkpointing --predict_with_generate --fp16 --group_by_length --do_train --do_eval --load_best_model_at_end --push_to_hub --use_auth_token --eval_split_name=test --eval_steps=500 --evaluation_strategy=steps --generation_max_length=40 --generation_num_beams=1 --gradient_accumulation_steps=8 --greater_is_better=True --hidden_dropout=0.056807662149569525 --language=fr.en --learning_rate=0.0005558468401613797 --logging_steps=1 --max_duration_in_seconds=20 --metric_for_best_model=bleu --model_name_or_path=./ --num_train_epochs=3 --output_dir=./output_dir --per_device_eval_batch_size=4 --per_device_train_batch_size=4 --save_steps=500 --task=covost2 --warmup_steps=500
102
- 2022-05-03 17:11:12 INFO Running runs: ['qv3vjr6j']
103
- 2022-05-03 17:10:28 INFO About to run command: python3 run_xtreme_s.py --overwrite_output_dir --freeze_feature_encoder --gradient_checkpointing --predict_with_generate --fp16 --group_by_length --do_train --do_eval --load_best_model_at_end --push_to_hub --use_auth_token --eval_split_name=test --eval_steps=500 --evaluation_strategy=steps --generation_max_length=40 --generation_num_beams=1 --gradient_accumulation_steps=8 --greater_is_better=True --hidden_dropout=0.1875094322808032 --language=fr.en --learning_rate=0.00024438201183496223 --logging_steps=1 --max_duration_in_seconds=20 --metric_for_best_model=bleu --model_name_or_path=./ --num_train_epochs=3 --output_dir=./output_dir --per_device_eval_batch_size=4 --per_device_train_batch_size=4 --save_steps=500 --task=covost2 --warmup_steps=500
104
- 2022-05-03 17:11:29 INFO Running runs: ['irggvkgd']
105
- 2022-05-03 17:11:37 INFO Cleaning up finished run: qv3vjr6j
106
- 2022-05-03 17:11:37 INFO Agent received command: run
107
- 2022-05-03 17:11:37 INFO Agent starting run with config:
108
  eval_split_name: test
109
  eval_steps: 500
110
  evaluation_strategy: steps
@@ -112,24 +34,25 @@
112
  generation_num_beams: 1
113
  gradient_accumulation_steps: 8
114
  greater_is_better: True
115
- hidden_dropout: 0.03413483050532159
116
  language: fr.en
117
- learning_rate: 0.00022086866790135088
118
  logging_steps: 1
119
  max_duration_in_seconds: 20
120
  metric_for_best_model: bleu
121
  model_name_or_path: ./
122
  num_train_epochs: 3
123
- output_dir: ./output_dir
124
- per_device_eval_batch_size: 4
125
- per_device_train_batch_size: 4
126
  save_steps: 500
127
  task: covost2
128
  warmup_steps: 500
129
- 2022-05-03 17:11:37 INFO About to run command: python3 run_xtreme_s.py --overwrite_output_dir --freeze_feature_encoder --gradient_checkpointing --predict_with_generate --fp16 --group_by_length --do_train --do_eval --load_best_model_at_end --push_to_hub --use_auth_token --eval_split_name=test --eval_steps=500 --evaluation_strategy=steps --generation_max_length=40 --generation_num_beams=1 --gradient_accumulation_steps=8 --greater_is_better=True --hidden_dropout=0.03413483050532159 --language=fr.en --learning_rate=0.00022086866790135088 --logging_steps=1 --max_duration_in_seconds=20 --metric_for_best_model=bleu --model_name_or_path=./ --num_train_epochs=3 --output_dir=./output_dir --per_device_eval_batch_size=4 --per_device_train_batch_size=4 --save_steps=500 --task=covost2 --warmup_steps=500
130
- 2022-05-03 17:15:19 INFO Running runs: []
131
- 2022-05-03 17:15:19 INFO Agent received command: run
132
- 2022-05-03 17:15:19 INFO Agent starting run with config:
 
133
  eval_split_name: test
134
  eval_steps: 500
135
  evaluation_strategy: steps
@@ -137,21 +60,19 @@
137
  generation_num_beams: 1
138
  gradient_accumulation_steps: 8
139
  greater_is_better: True
140
- hidden_dropout: 0.06862889720223829
141
  language: fr.en
142
- learning_rate: 0.0004848089062550082
143
  logging_steps: 1
144
  max_duration_in_seconds: 20
145
  metric_for_best_model: bleu
146
  model_name_or_path: ./
147
  num_train_epochs: 3
148
  output_dir: ./
149
- per_device_eval_batch_size: 4
150
- per_device_train_batch_size: 4
151
  save_steps: 500
152
  task: covost2
153
  warmup_steps: 500
154
- 2022-05-03 17:15:19 INFO About to run command: python3 run_xtreme_s.py --overwrite_output_dir --freeze_feature_encoder --gradient_checkpointing --predict_with_generate --fp16 --group_by_length --do_train --do_eval --load_best_model_at_end --push_to_hub --use_auth_token --eval_split_name=test --eval_steps=500 --evaluation_strategy=steps --generation_max_length=40 --generation_num_beams=1 --gradient_accumulation_steps=8 --greater_is_better=True --hidden_dropout=0.06862889720223829 --language=fr.en --learning_rate=0.0004848089062550082 --logging_steps=1 --max_duration_in_seconds=20 --metric_for_best_model=bleu --model_name_or_path=./ --num_train_epochs=3 --output_dir=./ --per_device_eval_batch_size=4 --per_device_train_batch_size=4 --save_steps=500 --task=covost2 --warmup_steps=500
155
- 2022-05-03 17:15:24 INFO Running runs: ['a6039xud']
156
- 2022-05-03 23:57:28 ERROR 500 response executing GraphQL.
157
- 2022-05-03 23:57:28 ERROR {"error":"context deadline exceeded"}
 
1
+ 2022-05-04 13:11:52 INFO Running runs: []
2
+ 2022-05-04 13:11:53 INFO Agent received command: run
3
+ 2022-05-04 13:11:53 INFO Agent starting run with config:
4
  eval_split_name: test
5
  eval_steps: 500
6
  evaluation_strategy: steps
 
8
  generation_num_beams: 1
9
  gradient_accumulation_steps: 8
10
  greater_is_better: True
11
+ hidden_dropout: 0.18004101365999406
12
  language: fr.en
13
+ learning_rate: 0.0002757119755681108
14
  logging_steps: 1
15
  max_duration_in_seconds: 20
16
  metric_for_best_model: bleu
17
  model_name_or_path: ./
18
  num_train_epochs: 3
19
+ output_dir: ./
20
+ per_device_eval_batch_size: 8
21
+ per_device_train_batch_size: 8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22
  save_steps: 500
23
  task: covost2
24
  warmup_steps: 500
25
+ 2022-05-04 13:11:53 INFO About to run command: python3 run_xtreme_s.py --overwrite_output_dir --freeze_feature_encoder --gradient_checkpointing --predict_with_generate --fp16 --group_by_length --do_train --do_eval --load_best_model_at_end --push_to_hub --use_auth_token --eval_split_name=test --eval_steps=500 --evaluation_strategy=steps --generation_max_length=40 --generation_num_beams=1 --gradient_accumulation_steps=8 --greater_is_better=True --hidden_dropout=0.18004101365999406 --language=fr.en --learning_rate=0.0002757119755681108 --logging_steps=1 --max_duration_in_seconds=20 --metric_for_best_model=bleu --model_name_or_path=./ --num_train_epochs=3 --output_dir=./ --per_device_eval_batch_size=8 --per_device_train_batch_size=8 --save_steps=500 --task=covost2 --warmup_steps=500
26
+ 2022-05-04 13:11:58 INFO Running runs: ['qk3ze7ok']
27
+ 2022-05-04 13:12:13 INFO Running runs: []
28
+ 2022-05-04 13:12:13 INFO Agent received command: run
29
+ 2022-05-04 13:12:13 INFO Agent starting run with config:
 
 
30
  eval_split_name: test
31
  eval_steps: 500
32
  evaluation_strategy: steps
 
34
  generation_num_beams: 1
35
  gradient_accumulation_steps: 8
36
  greater_is_better: True
37
+ hidden_dropout: 0.04999238095195753
38
  language: fr.en
39
+ learning_rate: 0.0007702133913256148
40
  logging_steps: 1
41
  max_duration_in_seconds: 20
42
  metric_for_best_model: bleu
43
  model_name_or_path: ./
44
  num_train_epochs: 3
45
+ output_dir: ./
46
+ per_device_eval_batch_size: 8
47
+ per_device_train_batch_size: 8
48
  save_steps: 500
49
  task: covost2
50
  warmup_steps: 500
51
+ 2022-05-04 13:12:13 INFO About to run command: python3 run_xtreme_s.py --overwrite_output_dir --freeze_feature_encoder --gradient_checkpointing --predict_with_generate --fp16 --group_by_length --do_train --do_eval --load_best_model_at_end --push_to_hub --use_auth_token --eval_split_name=test --eval_steps=500 --evaluation_strategy=steps --generation_max_length=40 --generation_num_beams=1 --gradient_accumulation_steps=8 --greater_is_better=True --hidden_dropout=0.04999238095195753 --language=fr.en --learning_rate=0.0007702133913256148 --logging_steps=1 --max_duration_in_seconds=20 --metric_for_best_model=bleu --model_name_or_path=./ --num_train_epochs=3 --output_dir=./ --per_device_eval_batch_size=8 --per_device_train_batch_size=8 --save_steps=500 --task=covost2 --warmup_steps=500
52
+ 2022-05-04 13:12:18 INFO Running runs: ['o7jpar4x']
53
+ 2022-05-04 13:30:33 INFO Running runs: []
54
+ 2022-05-04 13:30:33 INFO Agent received command: run
55
+ 2022-05-04 13:30:33 INFO Agent starting run with config:
56
  eval_split_name: test
57
  eval_steps: 500
58
  evaluation_strategy: steps
 
60
  generation_num_beams: 1
61
  gradient_accumulation_steps: 8
62
  greater_is_better: True
63
+ hidden_dropout: 0.035938233699532036
64
  language: fr.en
65
+ learning_rate: 0.0003284999261672522
66
  logging_steps: 1
67
  max_duration_in_seconds: 20
68
  metric_for_best_model: bleu
69
  model_name_or_path: ./
70
  num_train_epochs: 3
71
  output_dir: ./
72
+ per_device_eval_batch_size: 8
73
+ per_device_train_batch_size: 8
74
  save_steps: 500
75
  task: covost2
76
  warmup_steps: 500
77
+ 2022-05-04 13:30:33 INFO About to run command: python3 run_xtreme_s.py --overwrite_output_dir --freeze_feature_encoder --gradient_checkpointing --predict_with_generate --fp16 --group_by_length --do_train --do_eval --load_best_model_at_end --push_to_hub --use_auth_token --eval_split_name=test --eval_steps=500 --evaluation_strategy=steps --generation_max_length=40 --generation_num_beams=1 --gradient_accumulation_steps=8 --greater_is_better=True --hidden_dropout=0.035938233699532036 --language=fr.en --learning_rate=0.0003284999261672522 --logging_steps=1 --max_duration_in_seconds=20 --metric_for_best_model=bleu --model_name_or_path=./ --num_train_epochs=3 --output_dir=./ --per_device_eval_batch_size=8 --per_device_train_batch_size=8 --save_steps=500 --task=covost2 --warmup_steps=500
78
+ 2022-05-04 13:30:38 INFO Running runs: ['1tmxz74i']
 
 
wandb/debug-internal.log CHANGED
@@ -1 +1 @@
1
- run-20220503_171959-a6039xud/logs/debug-internal.log
 
1
+ run-20220504_142129-1tmxz74i/logs/debug-internal.log
wandb/debug.log CHANGED
@@ -1 +1 @@
1
- run-20220503_171959-a6039xud/logs/debug.log
 
1
+ run-20220504_142129-1tmxz74i/logs/debug.log
wandb/latest-run CHANGED
@@ -1 +1 @@
1
- run-20220503_171959-a6039xud
 
1
+ run-20220504_142129-1tmxz74i
wandb/run-20220503_171959-a6039xud/files/wandb-summary.json DELETED
The diff for this file is too large to render. See raw diff
 
wandb/run-20220503_171959-a6039xud/logs/debug-internal.log DELETED
The diff for this file is too large to render. See raw diff
 
wandb/{run-20220503_171959-a6039xud β†’ run-20220504_142129-1tmxz74i}/files/config.yaml RENAMED
@@ -8643,7 +8643,7 @@ _wandb:
8643
  6:
8644
  - 1
8645
  python_version: 3.9.5
8646
- start_time: 1651598400
8647
  t:
8648
  1:
8649
  - 1
@@ -8914,7 +8914,7 @@ encoder:
8914
  forced_eos_token_id: null
8915
  gradient_checkpointing: false
8916
  hidden_act: gelu
8917
- hidden_dropout: 0.06862889720223829
8918
  hidden_size: 1024
8919
  id2label:
8920
  '0': LABEL_0
@@ -9009,7 +9009,7 @@ eval_accumulation_steps:
9009
  value: None
9010
  eval_batch_size:
9011
  desc: null
9012
- value: 4
9013
  eval_delay:
9014
  desc: null
9015
  value: 0
@@ -9069,7 +9069,7 @@ half_precision_backend:
9069
  value: amp
9070
  hidden_dropout:
9071
  desc: null
9072
- value: 0.06862889720223829
9073
  hub_model_id:
9074
  desc: null
9075
  value: None
@@ -9115,7 +9115,7 @@ language:
9115
  value: fr.en
9116
  learning_rate:
9117
  desc: null
9118
- value: 0.0004848089062550082
9119
  length_column_name:
9120
  desc: null
9121
  value: length
@@ -9139,7 +9139,7 @@ log_on_each_node:
9139
  value: true
9140
  logging_dir:
9141
  desc: null
9142
- value: ./runs/May03_17-15-22_sanchit--v100
9143
  logging_first_step:
9144
  desc: null
9145
  value: false
@@ -9226,10 +9226,10 @@ past_index:
9226
  value: -1
9227
  per_device_eval_batch_size:
9228
  desc: null
9229
- value: 4
9230
  per_device_train_batch_size:
9231
  desc: null
9232
- value: 4
9233
  per_gpu_eval_batch_size:
9234
  desc: null
9235
  value: None
@@ -9358,7 +9358,7 @@ tpu_num_cores:
9358
  value: None
9359
  train_batch_size:
9360
  desc: null
9361
- value: 4
9362
  transformers_version:
9363
  desc: null
9364
  value: null
 
8643
  6:
8644
  - 1
8645
  python_version: 3.9.5
8646
+ start_time: 1651674089
8647
  t:
8648
  1:
8649
  - 1
 
8914
  forced_eos_token_id: null
8915
  gradient_checkpointing: false
8916
  hidden_act: gelu
8917
+ hidden_dropout: 0.035938233699532036
8918
  hidden_size: 1024
8919
  id2label:
8920
  '0': LABEL_0
 
9009
  value: None
9010
  eval_batch_size:
9011
  desc: null
9012
+ value: 8
9013
  eval_delay:
9014
  desc: null
9015
  value: 0
 
9069
  value: amp
9070
  hidden_dropout:
9071
  desc: null
9072
+ value: 0.035938233699532036
9073
  hub_model_id:
9074
  desc: null
9075
  value: None
 
9115
  value: fr.en
9116
  learning_rate:
9117
  desc: null
9118
+ value: 0.0003284999261672522
9119
  length_column_name:
9120
  desc: null
9121
  value: length
 
9139
  value: true
9140
  logging_dir:
9141
  desc: null
9142
+ value: ./runs/May04_13-30-37_sanchit--v100
9143
  logging_first_step:
9144
  desc: null
9145
  value: false
 
9226
  value: -1
9227
  per_device_eval_batch_size:
9228
  desc: null
9229
+ value: 8
9230
  per_device_train_batch_size:
9231
  desc: null
9232
+ value: 8
9233
  per_gpu_eval_batch_size:
9234
  desc: null
9235
  value: None
 
9358
  value: None
9359
  train_batch_size:
9360
  desc: null
9361
+ value: 8
9362
  transformers_version:
9363
  desc: null
9364
  value: null
wandb/run-20220504_142129-1tmxz74i/files/output.log ADDED
The diff for this file is too large to render. See raw diff
 
wandb/{run-20220503_171959-a6039xud β†’ run-20220504_142129-1tmxz74i}/files/requirements.txt RENAMED
File without changes
wandb/{run-20220503_171959-a6039xud β†’ run-20220504_142129-1tmxz74i}/files/wandb-metadata.json RENAMED
@@ -1,8 +1,8 @@
1
  {
2
  "os": "Linux-5.11.0-1028-gcp-x86_64-with-glibc2.33",
3
  "python": "3.9.5",
4
- "heartbeatAt": "2022-05-03T17:20:04.283739",
5
- "startedAt": "2022-05-03T17:19:59.978222",
6
  "docker": null,
7
  "gpu": "Tesla V100-SXM2-16GB",
8
  "gpu_count": 2,
@@ -27,17 +27,17 @@
27
  "--generation_num_beams=1",
28
  "--gradient_accumulation_steps=8",
29
  "--greater_is_better=True",
30
- "--hidden_dropout=0.06862889720223829",
31
  "--language=fr.en",
32
- "--learning_rate=0.0004848089062550082",
33
  "--logging_steps=1",
34
  "--max_duration_in_seconds=20",
35
  "--metric_for_best_model=bleu",
36
  "--model_name_or_path=./",
37
  "--num_train_epochs=3",
38
  "--output_dir=./",
39
- "--per_device_eval_batch_size=4",
40
- "--per_device_train_batch_size=4",
41
  "--save_steps=500",
42
  "--task=covost2",
43
  "--warmup_steps=500"
@@ -47,7 +47,7 @@
47
  "codePath": "run_xtreme_s.py",
48
  "git": {
49
  "remote": "https://huggingface.co/sanchit-gandhi/xtreme_s_xlsr_2_bart_covost2_fr_en",
50
- "commit": "c787ad4df48cedb3c1492e0593442fbabf32819f"
51
  },
52
  "email": "[email protected]",
53
  "root": "/home/sanchit_huggingface_co/xtreme_s_xlsr_2_bart_covost2_fr_en",
 
1
  {
2
  "os": "Linux-5.11.0-1028-gcp-x86_64-with-glibc2.33",
3
  "python": "3.9.5",
4
+ "heartbeatAt": "2022-05-04T14:21:35.228898",
5
+ "startedAt": "2022-05-04T14:21:29.131934",
6
  "docker": null,
7
  "gpu": "Tesla V100-SXM2-16GB",
8
  "gpu_count": 2,
 
27
  "--generation_num_beams=1",
28
  "--gradient_accumulation_steps=8",
29
  "--greater_is_better=True",
30
+ "--hidden_dropout=0.035938233699532036",
31
  "--language=fr.en",
32
+ "--learning_rate=0.0003284999261672522",
33
  "--logging_steps=1",
34
  "--max_duration_in_seconds=20",
35
  "--metric_for_best_model=bleu",
36
  "--model_name_or_path=./",
37
  "--num_train_epochs=3",
38
  "--output_dir=./",
39
+ "--per_device_eval_batch_size=8",
40
+ "--per_device_train_batch_size=8",
41
  "--save_steps=500",
42
  "--task=covost2",
43
  "--warmup_steps=500"
 
47
  "codePath": "run_xtreme_s.py",
48
  "git": {
49
  "remote": "https://huggingface.co/sanchit-gandhi/xtreme_s_xlsr_2_bart_covost2_fr_en",
50
+ "commit": "269164c4f37d0592db1babe9bf5fc77464fa8c97"
51
  },
52
  "email": "[email protected]",
53
  "root": "/home/sanchit_huggingface_co/xtreme_s_xlsr_2_bart_covost2_fr_en",
wandb/run-20220504_142129-1tmxz74i/files/wandb-summary.json ADDED
The diff for this file is too large to render. See raw diff
 
wandb/run-20220504_142129-1tmxz74i/logs/debug-internal.log ADDED
The diff for this file is too large to render. See raw diff
 
wandb/{run-20220503_171959-a6039xud β†’ run-20220504_142129-1tmxz74i}/logs/debug.log RENAMED
@@ -1,28 +1,28 @@
1
- 2022-05-03 17:19:59,980 INFO MainThread:42111 [wandb_setup.py:_flush():75] Loading settings from /home/sanchit_huggingface_co/.config/wandb/settings
2
- 2022-05-03 17:19:59,980 INFO MainThread:42111 [wandb_setup.py:_flush():75] Loading settings from wandb/settings
3
- 2022-05-03 17:19:59,980 INFO MainThread:42111 [wandb_setup.py:_flush():75] Loading settings from environment variables: {'entity': 'sanchit-gandhi', 'project': 'xtreme_s_xlsr_2_bart_covost2_fr_en', 'sweep_id': '39ci3gkf', 'root_dir': '/home/sanchit_huggingface_co/xtreme_s_xlsr_2_bart_covost2_fr_en', 'run_id': 'a6039xud', 'sweep_param_path': '/home/sanchit_huggingface_co/xtreme_s_xlsr_2_bart_covost2_fr_en/wandb/sweep-39ci3gkf/config-a6039xud.yaml'}
4
- 2022-05-03 17:19:59,980 INFO MainThread:42111 [wandb_setup.py:_flush():75] Inferring run settings from compute environment: {'program_relpath': 'run_xtreme_s.py', 'program': '/home/sanchit_huggingface_co/xtreme_s_xlsr_2_bart_covost2_fr_en/run_xtreme_s.py'}
5
- 2022-05-03 17:19:59,980 INFO MainThread:42111 [wandb_init.py:_log_setup():386] Logging user logs to /home/sanchit_huggingface_co/xtreme_s_xlsr_2_bart_covost2_fr_en/wandb/run-20220503_171959-a6039xud/logs/debug.log
6
- 2022-05-03 17:19:59,980 INFO MainThread:42111 [wandb_init.py:_log_setup():387] Logging internal logs to /home/sanchit_huggingface_co/xtreme_s_xlsr_2_bart_covost2_fr_en/wandb/run-20220503_171959-a6039xud/logs/debug-internal.log
7
- 2022-05-03 17:19:59,980 INFO MainThread:42111 [wandb_init.py:init():420] calling init triggers
8
- 2022-05-03 17:19:59,980 INFO MainThread:42111 [wandb_init.py:init():425] wandb.init called with sweep_config: {'eval_split_name': 'test', 'eval_steps': 500, 'evaluation_strategy': 'steps', 'generation_max_length': 40, 'generation_num_beams': 1, 'gradient_accumulation_steps': 8, 'greater_is_better': True, 'hidden_dropout': 0.06862889720223829, 'language': 'fr.en', 'learning_rate': 0.0004848089062550082, 'logging_steps': 1, 'max_duration_in_seconds': 20, 'metric_for_best_model': 'bleu', 'model_name_or_path': './', 'num_train_epochs': 3, 'output_dir': './', 'per_device_eval_batch_size': 4, 'per_device_train_batch_size': 4, 'save_steps': 500, 'task': 'covost2', 'warmup_steps': 500}
9
  config: {}
10
- 2022-05-03 17:19:59,981 INFO MainThread:42111 [wandb_init.py:init():471] starting backend
11
- 2022-05-03 17:19:59,981 INFO MainThread:42111 [backend.py:_multiprocessing_setup():99] multiprocessing start_methods=fork,spawn,forkserver, using: spawn
12
- 2022-05-03 17:20:00,059 INFO MainThread:42111 [backend.py:ensure_launched():219] starting backend process...
13
- 2022-05-03 17:20:00,134 INFO MainThread:42111 [backend.py:ensure_launched():224] started backend process with pid: 42356
14
- 2022-05-03 17:20:00,137 INFO MainThread:42111 [wandb_init.py:init():480] backend started and connected
15
- 2022-05-03 17:20:00,140 INFO MainThread:42111 [wandb_run.py:_config_callback():966] config_cb None None {'eval_split_name': 'test', 'eval_steps': 500, 'evaluation_strategy': 'steps', 'generation_max_length': 40, 'generation_num_beams': 1, 'gradient_accumulation_steps': 8, 'greater_is_better': True, 'hidden_dropout': 0.06862889720223829, 'language': 'fr.en', 'learning_rate': 0.0004848089062550082, 'logging_steps': 1, 'max_duration_in_seconds': 20, 'metric_for_best_model': 'bleu', 'model_name_or_path': './', 'num_train_epochs': 3, 'output_dir': './', 'per_device_eval_batch_size': 4, 'per_device_train_batch_size': 4, 'save_steps': 500, 'task': 'covost2', 'warmup_steps': 500}
16
- 2022-05-03 17:20:00,155 INFO MainThread:42111 [wandb_init.py:init():550] updated telemetry
17
- 2022-05-03 17:20:00,359 INFO MainThread:42111 [wandb_init.py:init():581] communicating current version
18
- 2022-05-03 17:20:01,247 INFO MainThread:42111 [wandb_init.py:init():586] got version response upgrade_message: "wandb version 0.12.16 is available! To upgrade, please run:\n $ pip install wandb --upgrade"
19
 
20
- 2022-05-03 17:20:01,248 INFO MainThread:42111 [wandb_init.py:init():596] communicating run to backend with 30 second timeout
21
- 2022-05-03 17:20:01,757 INFO MainThread:42111 [wandb_init.py:init():624] starting run threads in backend
22
- 2022-05-03 17:20:04,342 INFO MainThread:42111 [wandb_run.py:_console_start():1827] atexit reg
23
- 2022-05-03 17:20:04,342 INFO MainThread:42111 [wandb_run.py:_redirect():1701] redirect: SettingsConsole.REDIRECT
24
- 2022-05-03 17:20:04,343 INFO MainThread:42111 [wandb_run.py:_redirect():1706] Redirecting console.
25
- 2022-05-03 17:20:04,345 INFO MainThread:42111 [wandb_run.py:_redirect():1762] Redirects installed.
26
- 2022-05-03 17:20:04,345 INFO MainThread:42111 [wandb_init.py:init():651] run started, returning control to user process
27
- 2022-05-03 17:20:04,348 INFO MainThread:42111 [wandb_run.py:_config_callback():966] config_cb None None {'return_dict': True, 'output_hidden_states': False, 'output_attentions': False, 'torchscript': False, 'torch_dtype': 'torch.float32', 'use_bfloat16': False, 'pruned_heads': {}, 'tie_word_embeddings': False, 'is_encoder_decoder': True, 'is_decoder': False, 'cross_attention_hidden_size': None, 'add_cross_attention': False, 'tie_encoder_decoder': False, 'max_length': 40, 'min_length': 0, 'do_sample': False, 'early_stopping': False, 'num_beams': 1, 'num_beam_groups': 1, 'diversity_penalty': 0.0, 'temperature': 1.0, 'top_k': 50, 'top_p': 1.0, 'typical_p': 1.0, 'repetition_penalty': 1.0, 'length_penalty': 1.0, 'no_repeat_ngram_size': 0, 'encoder_no_repeat_ngram_size': 0, 'bad_words_ids': None, 'num_return_sequences': 1, 'chunk_size_feed_forward': 0, 'output_scores': False, 'return_dict_in_generate': False, 'forced_bos_token_id': None, 'forced_eos_token_id': None, 'remove_invalid_values': False, 'exponential_decay_length_penalty': None, 'architectures': ['SpeechEncoderDecoderModel'], 'finetuning_task': None, 'id2label': {0: 'LABEL_0', 1: 'LABEL_1'}, 'label2id': {'LABEL_0': 0, 'LABEL_1': 1}, 'tokenizer_class': None, 'prefix': None, 'bos_token_id': None, 'pad_token_id': 1, 'eos_token_id': 2, 'sep_token_id': None, 'decoder_start_token_id': 0, 'task_specific_params': None, 'problem_type': None, '_name_or_path': './', 'transformers_version': None, 'decoder': {'vocab_size': 50265, 'max_position_embeddings': 1024, 'd_model': 1024, 'encoder_ffn_dim': 4096, 'encoder_layers': 12, 'encoder_attention_heads': 16, 'decoder_ffn_dim': 4096, 'decoder_layers': 12, 'decoder_attention_heads': 16, 'dropout': 0.1, 'attention_dropout': 0.1, 'activation_dropout': 0.1, 'activation_function': 'gelu', 'init_std': 0.02, 'encoder_layerdrop': 0.0, 'decoder_layerdrop': 0.0, 'classifier_dropout': 0.0, 'use_cache': True, 'num_hidden_layers': 12, 'scale_embedding': False, 'return_dict': True, 'output_hidden_states': False, 'output_attentions': False, 'torchscript': False, 'torch_dtype': None, 'use_bfloat16': False, 'pruned_heads': {}, 'tie_word_embeddings': True, 'is_encoder_decoder': False, 'is_decoder': True, 'cross_attention_hidden_size': None, 'add_cross_attention': True, 'tie_encoder_decoder': False, 'max_length': 20, 'min_length': 0, 'do_sample': False, 'early_stopping': True, 'num_beams': 4, 'num_beam_groups': 1, 'diversity_penalty': 0.0, 'temperature': 1.0, 'top_k': 50, 'top_p': 1.0, 'typical_p': 1.0, 'repetition_penalty': 1.0, 'length_penalty': 1.0, 'no_repeat_ngram_size': 3, 'encoder_no_repeat_ngram_size': 0, 'bad_words_ids': None, 'num_return_sequences': 1, 'chunk_size_feed_forward': 0, 'output_scores': False, 'return_dict_in_generate': False, 'forced_bos_token_id': 0, 'forced_eos_token_id': 2, 'remove_invalid_values': False, 'exponential_decay_length_penalty': None, 'architectures': ['BartModel'], 'finetuning_task': None, 'id2label': {0: 'LABEL_0', 1: 'LABEL_1', 2: 'LABEL_2'}, 'label2id': {'LABEL_0': 0, 'LABEL_1': 1, 'LABEL_2': 2}, 'tokenizer_class': None, 'prefix': None, 'bos_token_id': 0, 'pad_token_id': 1, 'eos_token_id': 2, 'sep_token_id': None, 'decoder_start_token_id': 2, 'task_specific_params': {'summarization': {'length_penalty': 1.0, 'max_length': 128, 'min_length': 12, 'num_beams': 4}, 'summarization_cnn': {'length_penalty': 2.0, 'max_length': 142, 'min_length': 56, 'num_beams': 4}, 'summarization_xsum': {'length_penalty': 1.0, 'max_length': 62, 'min_length': 11, 'num_beams': 6}}, 'problem_type': None, '_name_or_path': 'facebook/bart-large', 'transformers_version': '4.19.0.dev0', 'add_bias_logits': False, 'add_final_layer_norm': False, 'classif_dropout': 0.1, 'gradient_checkpointing': False, 'normalize_before': False, 'model_type': 'bart'}, 'encoder': {'return_dict': True, 'output_hidden_states': False, 'output_attentions': False, 'torchscript': False, 'torch_dtype': 'float32', 'use_bfloat16': False, 'pruned_heads': {}, 'tie_word_embeddings': True, 'is_encoder_decoder': False, 'is_decoder': False, 'cross_attention_hidden_size': None, 'add_cross_attention': False, 'tie_encoder_decoder': False, 'max_length': 20, 'min_length': 0, 'do_sample': False, 'early_stopping': False, 'num_beams': 1, 'num_beam_groups': 1, 'diversity_penalty': 0.0, 'temperature': 1.0, 'top_k': 50, 'top_p': 1.0, 'typical_p': 1.0, 'repetition_penalty': 1.0, 'length_penalty': 1.0, 'no_repeat_ngram_size': 0, 'encoder_no_repeat_ngram_size': 0, 'bad_words_ids': None, 'num_return_sequences': 1, 'chunk_size_feed_forward': 0, 'output_scores': False, 'return_dict_in_generate': False, 'forced_bos_token_id': None, 'forced_eos_token_id': None, 'remove_invalid_values': False, 'exponential_decay_length_penalty': None, 'architectures': ['Wav2Vec2ForPreTraining'], 'finetuning_task': None, 'id2label': {0: 'LABEL_0', 1: 'LABEL_1'}, 'label2id': {'LABEL_0': 0, 'LABEL_1': 1}, 'tokenizer_class': None, 'prefix': None, 'bos_token_id': 1, 'pad_token_id': 0, 'eos_token_id': 2, 'sep_token_id': None, 'decoder_start_token_id': None, 'task_specific_params': None, 'problem_type': None, '_name_or_path': 'facebook/wav2vec2-xls-r-300m', 'transformers_version': '4.19.0.dev0', 'feat_extract_dropout': 0.0, 'gradient_checkpointing': False, 'num_feat_extract_layers': 7, 'hidden_size': 1024, 'feat_extract_norm': 'layer', 'feat_extract_activation': 'gelu', 'conv_dim': [512, 512, 512, 512, 512, 512, 512], 'conv_stride': [5, 2, 2, 2, 2, 2, 2], 'conv_kernel': [10, 3, 3, 3, 3, 2, 2], 'conv_bias': True, 'num_conv_pos_embeddings': 128, 'num_conv_pos_embedding_groups': 16, 'num_hidden_layers': 24, 'intermediate_size': 4096, 'hidden_act': 'gelu', 'num_attention_heads': 16, 'hidden_dropout': 0.06862889720223829, 'attention_dropout': 0.1, 'activation_dropout': 0.0, 'feat_proj_dropout': 0.0, 'final_dropout': 0.0, 'layerdrop': 0.0, 'layer_norm_eps': 1e-05, 'initializer_range': 0.02, 'vocab_size': 32, 'do_stable_layer_norm': True, 'use_weighted_layer_sum': False, 'apply_spec_augment': True, 'mask_time_prob': 0.1, 'mask_time_length': 10, 'mask_time_min_masks': 2, 'mask_feature_prob': 0.0, 'mask_feature_length': 10, 'mask_feature_min_masks': 0, 'num_codevectors_per_group': 320, 'num_codevector_groups': 2, 'contrastive_logits_temperature': 0.1, 'feat_quantizer_dropout': 0.0, 'num_negatives': 100, 'codevector_dim': 768, 'proj_codevector_dim': 768, 'diversity_loss_weight': 0.1, 'ctc_loss_reduction': 'sum', 'ctc_zero_infinity': False, 'add_adapter': True, 'adapter_kernel_size': 3, 'adapter_stride': 2, 'num_adapter_layers': 3, 'output_hidden_size': 1024, 'classifier_proj_size': 256, 'tdnn_dim': [512, 512, 512, 512, 1500], 'tdnn_kernel': [5, 3, 3, 1, 1], 'tdnn_dilation': [1, 2, 3, 1, 1], 'xvector_output_dim': 512, 'model_type': 'wav2vec2'}, 'model_type': 'speech-encoder-decoder', 'processor_class': 'Wav2Vec2Processor', 'use_cache': False, 'overwrite_output_dir': True, 'do_train': True, 'do_eval': True, 'do_predict': False, 'prediction_loss_only': False, 'per_gpu_train_batch_size': 'None', 'per_gpu_eval_batch_size': 'None', 'eval_accumulation_steps': 'None', 'eval_delay': 0, 'weight_decay': 0.0, 'adam_beta1': 0.9, 'adam_beta2': 0.999, 'adam_epsilon': 1e-08, 'max_grad_norm': 1.0, 'max_steps': -1, 'lr_scheduler_type': 'linear', 'warmup_ratio': 0.0, 'log_level': -1, 'log_level_replica': -1, 'log_on_each_node': True, 'logging_dir': './runs/May03_17-15-22_sanchit--v100', 'logging_strategy': 'steps', 'logging_first_step': False, 'logging_nan_inf_filter': True, 'save_strategy': 'steps', 'save_total_limit': 'None', 'save_on_each_node': False, 'no_cuda': False, 'seed': 42, 'data_seed': 'None', 'bf16': False, 'fp16': True, 'fp16_opt_level': 'O1', 'half_precision_backend': 'amp', 'bf16_full_eval': False, 'fp16_full_eval': False, 'tf32': 'None', 'local_rank': -1, 'xpu_backend': 'None', 'tpu_num_cores': 'None', 'tpu_metrics_debug': False, 'debug': '[]', 'dataloader_drop_last': False, 'dataloader_num_workers': 0, 'past_index': -1, 'run_name': './', 'disable_tqdm': False, 'remove_unused_columns': True, 'label_names': 'None', 'load_best_model_at_end': True, 'ignore_data_skip': False, 'sharded_ddp': '[]', 'deepspeed': 'None', 'label_smoothing_factor': 0.0, 'optim': 'adamw_hf', 'adafactor': False, 'group_by_length': True, 'length_column_name': 'length', 'report_to': "['tensorboard', 'wandb', 'codecarbon']", 'ddp_find_unused_parameters': 'None', 'ddp_bucket_cap_mb': 'None', 'dataloader_pin_memory': True, 'skip_memory_metrics': True, 'use_legacy_prediction_loop': False, 'push_to_hub': True, 'resume_from_checkpoint': 'None', 'hub_model_id': 'None', 'hub_strategy': 'every_save', 'hub_token': '<HUB_TOKEN>', 'hub_private_repo': False, 'gradient_checkpointing': True, 'include_inputs_for_metrics': False, 'fp16_backend': 'auto', 'push_to_hub_model_id': 'None', 'push_to_hub_organization': 'None', 'push_to_hub_token': '<PUSH_TO_HUB_TOKEN>', '_n_gpu': 1, 'mp_parameters': '', 'sortish_sampler': False, 'predict_with_generate': True, 'train_batch_size': 4, 'eval_batch_size': 4}
28
- 2022-05-03 17:20:04,351 INFO MainThread:42111 [wandb_watch.py:watch():43] Watching
 
1
+ 2022-05-04 14:21:29,133 INFO MainThread:50375 [wandb_setup.py:_flush():75] Loading settings from /home/sanchit_huggingface_co/.config/wandb/settings
2
+ 2022-05-04 14:21:29,133 INFO MainThread:50375 [wandb_setup.py:_flush():75] Loading settings from wandb/settings
3
+ 2022-05-04 14:21:29,134 INFO MainThread:50375 [wandb_setup.py:_flush():75] Loading settings from environment variables: {'entity': 'sanchit-gandhi', 'project': 'xtreme_s_xlsr_2_bart_covost2_fr_en', 'sweep_id': 'pvyx3mpp', 'root_dir': '/home/sanchit_huggingface_co/xtreme_s_xlsr_2_bart_covost2_fr_en', 'run_id': '1tmxz74i', 'sweep_param_path': '/home/sanchit_huggingface_co/xtreme_s_xlsr_2_bart_covost2_fr_en/wandb/sweep-pvyx3mpp/config-1tmxz74i.yaml'}
4
+ 2022-05-04 14:21:29,134 INFO MainThread:50375 [wandb_setup.py:_flush():75] Inferring run settings from compute environment: {'program_relpath': 'run_xtreme_s.py', 'program': '/home/sanchit_huggingface_co/xtreme_s_xlsr_2_bart_covost2_fr_en/run_xtreme_s.py'}
5
+ 2022-05-04 14:21:29,134 INFO MainThread:50375 [wandb_init.py:_log_setup():386] Logging user logs to /home/sanchit_huggingface_co/xtreme_s_xlsr_2_bart_covost2_fr_en/wandb/run-20220504_142129-1tmxz74i/logs/debug.log
6
+ 2022-05-04 14:21:29,134 INFO MainThread:50375 [wandb_init.py:_log_setup():387] Logging internal logs to /home/sanchit_huggingface_co/xtreme_s_xlsr_2_bart_covost2_fr_en/wandb/run-20220504_142129-1tmxz74i/logs/debug-internal.log
7
+ 2022-05-04 14:21:29,134 INFO MainThread:50375 [wandb_init.py:init():420] calling init triggers
8
+ 2022-05-04 14:21:29,134 INFO MainThread:50375 [wandb_init.py:init():425] wandb.init called with sweep_config: {'eval_split_name': 'test', 'eval_steps': 500, 'evaluation_strategy': 'steps', 'generation_max_length': 40, 'generation_num_beams': 1, 'gradient_accumulation_steps': 8, 'greater_is_better': True, 'hidden_dropout': 0.035938233699532036, 'language': 'fr.en', 'learning_rate': 0.0003284999261672522, 'logging_steps': 1, 'max_duration_in_seconds': 20, 'metric_for_best_model': 'bleu', 'model_name_or_path': './', 'num_train_epochs': 3, 'output_dir': './', 'per_device_eval_batch_size': 8, 'per_device_train_batch_size': 8, 'save_steps': 500, 'task': 'covost2', 'warmup_steps': 500}
9
  config: {}
10
+ 2022-05-04 14:21:29,134 INFO MainThread:50375 [wandb_init.py:init():471] starting backend
11
+ 2022-05-04 14:21:29,134 INFO MainThread:50375 [backend.py:_multiprocessing_setup():99] multiprocessing start_methods=fork,spawn,forkserver, using: spawn
12
+ 2022-05-04 14:21:29,204 INFO MainThread:50375 [backend.py:ensure_launched():219] starting backend process...
13
+ 2022-05-04 14:21:29,272 INFO MainThread:50375 [backend.py:ensure_launched():224] started backend process with pid: 50991
14
+ 2022-05-04 14:21:29,275 INFO MainThread:50375 [wandb_init.py:init():480] backend started and connected
15
+ 2022-05-04 14:21:29,278 INFO MainThread:50375 [wandb_run.py:_config_callback():966] config_cb None None {'eval_split_name': 'test', 'eval_steps': 500, 'evaluation_strategy': 'steps', 'generation_max_length': 40, 'generation_num_beams': 1, 'gradient_accumulation_steps': 8, 'greater_is_better': True, 'hidden_dropout': 0.035938233699532036, 'language': 'fr.en', 'learning_rate': 0.0003284999261672522, 'logging_steps': 1, 'max_duration_in_seconds': 20, 'metric_for_best_model': 'bleu', 'model_name_or_path': './', 'num_train_epochs': 3, 'output_dir': './', 'per_device_eval_batch_size': 8, 'per_device_train_batch_size': 8, 'save_steps': 500, 'task': 'covost2', 'warmup_steps': 500}
16
+ 2022-05-04 14:21:29,292 INFO MainThread:50375 [wandb_init.py:init():550] updated telemetry
17
+ 2022-05-04 14:21:29,453 INFO MainThread:50375 [wandb_init.py:init():581] communicating current version
18
+ 2022-05-04 14:21:30,582 INFO MainThread:50375 [wandb_init.py:init():586] got version response upgrade_message: "wandb version 0.12.16 is available! To upgrade, please run:\n $ pip install wandb --upgrade"
19
 
20
+ 2022-05-04 14:21:30,583 INFO MainThread:50375 [wandb_init.py:init():596] communicating run to backend with 30 second timeout
21
+ 2022-05-04 14:21:30,658 INFO MainThread:50375 [wandb_init.py:init():624] starting run threads in backend
22
+ 2022-05-04 14:21:35,281 INFO MainThread:50375 [wandb_run.py:_console_start():1827] atexit reg
23
+ 2022-05-04 14:21:35,281 INFO MainThread:50375 [wandb_run.py:_redirect():1701] redirect: SettingsConsole.REDIRECT
24
+ 2022-05-04 14:21:35,282 INFO MainThread:50375 [wandb_run.py:_redirect():1706] Redirecting console.
25
+ 2022-05-04 14:21:35,284 INFO MainThread:50375 [wandb_run.py:_redirect():1762] Redirects installed.
26
+ 2022-05-04 14:21:35,284 INFO MainThread:50375 [wandb_init.py:init():651] run started, returning control to user process
27
+ 2022-05-04 14:21:35,288 INFO MainThread:50375 [wandb_run.py:_config_callback():966] config_cb None None {'return_dict': True, 'output_hidden_states': False, 'output_attentions': False, 'torchscript': False, 'torch_dtype': 'torch.float32', 'use_bfloat16': False, 'pruned_heads': {}, 'tie_word_embeddings': False, 'is_encoder_decoder': True, 'is_decoder': False, 'cross_attention_hidden_size': None, 'add_cross_attention': False, 'tie_encoder_decoder': False, 'max_length': 40, 'min_length': 0, 'do_sample': False, 'early_stopping': False, 'num_beams': 1, 'num_beam_groups': 1, 'diversity_penalty': 0.0, 'temperature': 1.0, 'top_k': 50, 'top_p': 1.0, 'typical_p': 1.0, 'repetition_penalty': 1.0, 'length_penalty': 1.0, 'no_repeat_ngram_size': 0, 'encoder_no_repeat_ngram_size': 0, 'bad_words_ids': None, 'num_return_sequences': 1, 'chunk_size_feed_forward': 0, 'output_scores': False, 'return_dict_in_generate': False, 'forced_bos_token_id': None, 'forced_eos_token_id': None, 'remove_invalid_values': False, 'exponential_decay_length_penalty': None, 'architectures': ['SpeechEncoderDecoderModel'], 'finetuning_task': None, 'id2label': {0: 'LABEL_0', 1: 'LABEL_1'}, 'label2id': {'LABEL_0': 0, 'LABEL_1': 1}, 'tokenizer_class': None, 'prefix': None, 'bos_token_id': None, 'pad_token_id': 1, 'eos_token_id': 2, 'sep_token_id': None, 'decoder_start_token_id': 0, 'task_specific_params': None, 'problem_type': None, '_name_or_path': './', 'transformers_version': None, 'decoder': {'vocab_size': 50265, 'max_position_embeddings': 1024, 'd_model': 1024, 'encoder_ffn_dim': 4096, 'encoder_layers': 12, 'encoder_attention_heads': 16, 'decoder_ffn_dim': 4096, 'decoder_layers': 12, 'decoder_attention_heads': 16, 'dropout': 0.1, 'attention_dropout': 0.1, 'activation_dropout': 0.1, 'activation_function': 'gelu', 'init_std': 0.02, 'encoder_layerdrop': 0.0, 'decoder_layerdrop': 0.0, 'classifier_dropout': 0.0, 'use_cache': True, 'num_hidden_layers': 12, 'scale_embedding': False, 'return_dict': True, 'output_hidden_states': False, 'output_attentions': False, 'torchscript': False, 'torch_dtype': None, 'use_bfloat16': False, 'pruned_heads': {}, 'tie_word_embeddings': True, 'is_encoder_decoder': False, 'is_decoder': True, 'cross_attention_hidden_size': None, 'add_cross_attention': True, 'tie_encoder_decoder': False, 'max_length': 20, 'min_length': 0, 'do_sample': False, 'early_stopping': True, 'num_beams': 4, 'num_beam_groups': 1, 'diversity_penalty': 0.0, 'temperature': 1.0, 'top_k': 50, 'top_p': 1.0, 'typical_p': 1.0, 'repetition_penalty': 1.0, 'length_penalty': 1.0, 'no_repeat_ngram_size': 3, 'encoder_no_repeat_ngram_size': 0, 'bad_words_ids': None, 'num_return_sequences': 1, 'chunk_size_feed_forward': 0, 'output_scores': False, 'return_dict_in_generate': False, 'forced_bos_token_id': 0, 'forced_eos_token_id': 2, 'remove_invalid_values': False, 'exponential_decay_length_penalty': None, 'architectures': ['BartModel'], 'finetuning_task': None, 'id2label': {0: 'LABEL_0', 1: 'LABEL_1', 2: 'LABEL_2'}, 'label2id': {'LABEL_0': 0, 'LABEL_1': 1, 'LABEL_2': 2}, 'tokenizer_class': None, 'prefix': None, 'bos_token_id': 0, 'pad_token_id': 1, 'eos_token_id': 2, 'sep_token_id': None, 'decoder_start_token_id': 2, 'task_specific_params': {'summarization': {'length_penalty': 1.0, 'max_length': 128, 'min_length': 12, 'num_beams': 4}, 'summarization_cnn': {'length_penalty': 2.0, 'max_length': 142, 'min_length': 56, 'num_beams': 4}, 'summarization_xsum': {'length_penalty': 1.0, 'max_length': 62, 'min_length': 11, 'num_beams': 6}}, 'problem_type': None, '_name_or_path': 'facebook/bart-large', 'transformers_version': '4.19.0.dev0', 'add_bias_logits': False, 'add_final_layer_norm': False, 'classif_dropout': 0.1, 'gradient_checkpointing': False, 'normalize_before': False, 'model_type': 'bart'}, 'encoder': {'return_dict': True, 'output_hidden_states': False, 'output_attentions': False, 'torchscript': False, 'torch_dtype': 'float32', 'use_bfloat16': False, 'pruned_heads': {}, 'tie_word_embeddings': True, 'is_encoder_decoder': False, 'is_decoder': False, 'cross_attention_hidden_size': None, 'add_cross_attention': False, 'tie_encoder_decoder': False, 'max_length': 20, 'min_length': 0, 'do_sample': False, 'early_stopping': False, 'num_beams': 1, 'num_beam_groups': 1, 'diversity_penalty': 0.0, 'temperature': 1.0, 'top_k': 50, 'top_p': 1.0, 'typical_p': 1.0, 'repetition_penalty': 1.0, 'length_penalty': 1.0, 'no_repeat_ngram_size': 0, 'encoder_no_repeat_ngram_size': 0, 'bad_words_ids': None, 'num_return_sequences': 1, 'chunk_size_feed_forward': 0, 'output_scores': False, 'return_dict_in_generate': False, 'forced_bos_token_id': None, 'forced_eos_token_id': None, 'remove_invalid_values': False, 'exponential_decay_length_penalty': None, 'architectures': ['Wav2Vec2ForPreTraining'], 'finetuning_task': None, 'id2label': {0: 'LABEL_0', 1: 'LABEL_1'}, 'label2id': {'LABEL_0': 0, 'LABEL_1': 1}, 'tokenizer_class': None, 'prefix': None, 'bos_token_id': 1, 'pad_token_id': 0, 'eos_token_id': 2, 'sep_token_id': None, 'decoder_start_token_id': None, 'task_specific_params': None, 'problem_type': None, '_name_or_path': 'facebook/wav2vec2-xls-r-300m', 'transformers_version': '4.19.0.dev0', 'feat_extract_dropout': 0.0, 'gradient_checkpointing': False, 'num_feat_extract_layers': 7, 'hidden_size': 1024, 'feat_extract_norm': 'layer', 'feat_extract_activation': 'gelu', 'conv_dim': [512, 512, 512, 512, 512, 512, 512], 'conv_stride': [5, 2, 2, 2, 2, 2, 2], 'conv_kernel': [10, 3, 3, 3, 3, 2, 2], 'conv_bias': True, 'num_conv_pos_embeddings': 128, 'num_conv_pos_embedding_groups': 16, 'num_hidden_layers': 24, 'intermediate_size': 4096, 'hidden_act': 'gelu', 'num_attention_heads': 16, 'hidden_dropout': 0.035938233699532036, 'attention_dropout': 0.1, 'activation_dropout': 0.0, 'feat_proj_dropout': 0.0, 'final_dropout': 0.0, 'layerdrop': 0.0, 'layer_norm_eps': 1e-05, 'initializer_range': 0.02, 'vocab_size': 32, 'do_stable_layer_norm': True, 'use_weighted_layer_sum': False, 'apply_spec_augment': True, 'mask_time_prob': 0.1, 'mask_time_length': 10, 'mask_time_min_masks': 2, 'mask_feature_prob': 0.0, 'mask_feature_length': 10, 'mask_feature_min_masks': 0, 'num_codevectors_per_group': 320, 'num_codevector_groups': 2, 'contrastive_logits_temperature': 0.1, 'feat_quantizer_dropout': 0.0, 'num_negatives': 100, 'codevector_dim': 768, 'proj_codevector_dim': 768, 'diversity_loss_weight': 0.1, 'ctc_loss_reduction': 'sum', 'ctc_zero_infinity': False, 'add_adapter': True, 'adapter_kernel_size': 3, 'adapter_stride': 2, 'num_adapter_layers': 3, 'output_hidden_size': 1024, 'classifier_proj_size': 256, 'tdnn_dim': [512, 512, 512, 512, 1500], 'tdnn_kernel': [5, 3, 3, 1, 1], 'tdnn_dilation': [1, 2, 3, 1, 1], 'xvector_output_dim': 512, 'model_type': 'wav2vec2'}, 'model_type': 'speech-encoder-decoder', 'processor_class': 'Wav2Vec2Processor', 'use_cache': False, 'overwrite_output_dir': True, 'do_train': True, 'do_eval': True, 'do_predict': False, 'prediction_loss_only': False, 'per_gpu_train_batch_size': 'None', 'per_gpu_eval_batch_size': 'None', 'eval_accumulation_steps': 'None', 'eval_delay': 0, 'weight_decay': 0.0, 'adam_beta1': 0.9, 'adam_beta2': 0.999, 'adam_epsilon': 1e-08, 'max_grad_norm': 1.0, 'max_steps': -1, 'lr_scheduler_type': 'linear', 'warmup_ratio': 0.0, 'log_level': -1, 'log_level_replica': -1, 'log_on_each_node': True, 'logging_dir': './runs/May04_13-30-37_sanchit--v100', 'logging_strategy': 'steps', 'logging_first_step': False, 'logging_nan_inf_filter': True, 'save_strategy': 'steps', 'save_total_limit': 'None', 'save_on_each_node': False, 'no_cuda': False, 'seed': 42, 'data_seed': 'None', 'bf16': False, 'fp16': True, 'fp16_opt_level': 'O1', 'half_precision_backend': 'amp', 'bf16_full_eval': False, 'fp16_full_eval': False, 'tf32': 'None', 'local_rank': -1, 'xpu_backend': 'None', 'tpu_num_cores': 'None', 'tpu_metrics_debug': False, 'debug': '[]', 'dataloader_drop_last': False, 'dataloader_num_workers': 0, 'past_index': -1, 'run_name': './', 'disable_tqdm': False, 'remove_unused_columns': True, 'label_names': 'None', 'load_best_model_at_end': True, 'ignore_data_skip': False, 'sharded_ddp': '[]', 'deepspeed': 'None', 'label_smoothing_factor': 0.0, 'optim': 'adamw_hf', 'adafactor': False, 'group_by_length': True, 'length_column_name': 'length', 'report_to': "['tensorboard', 'wandb', 'codecarbon']", 'ddp_find_unused_parameters': 'None', 'ddp_bucket_cap_mb': 'None', 'dataloader_pin_memory': True, 'skip_memory_metrics': True, 'use_legacy_prediction_loop': False, 'push_to_hub': True, 'resume_from_checkpoint': 'None', 'hub_model_id': 'None', 'hub_strategy': 'every_save', 'hub_token': '<HUB_TOKEN>', 'hub_private_repo': False, 'gradient_checkpointing': True, 'include_inputs_for_metrics': False, 'fp16_backend': 'auto', 'push_to_hub_model_id': 'None', 'push_to_hub_organization': 'None', 'push_to_hub_token': '<PUSH_TO_HUB_TOKEN>', '_n_gpu': 1, 'mp_parameters': '', 'sortish_sampler': False, 'predict_with_generate': True, 'train_batch_size': 8, 'eval_batch_size': 8}
28
+ 2022-05-04 14:21:35,292 INFO MainThread:50375 [wandb_watch.py:watch():43] Watching
wandb/run-20220504_142129-1tmxz74i/run-1tmxz74i.wandb ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:65c51ab08a6f7680732f10e9ba9643f597a3738005b0fe08b87027fd18bdfa5f
3
+ size 52596447
wandb/{sweep-y3ak427l/config-irggvkgd.yaml β†’ sweep-pvyx3mpp/config-1tmxz74i.yaml} RENAMED
@@ -15,11 +15,11 @@ gradient_accumulation_steps:
15
  greater_is_better:
16
  value: true
17
  hidden_dropout:
18
- value: 0.1875094322808032
19
  language:
20
  value: fr.en
21
  learning_rate:
22
- value: 0.00024438201183496223
23
  logging_steps:
24
  value: 1
25
  max_duration_in_seconds:
@@ -31,11 +31,11 @@ model_name_or_path:
31
  num_train_epochs:
32
  value: 3
33
  output_dir:
34
- value: ./output_dir
35
  per_device_eval_batch_size:
36
- value: 4
37
  per_device_train_batch_size:
38
- value: 4
39
  save_steps:
40
  value: 500
41
  task:
 
15
  greater_is_better:
16
  value: true
17
  hidden_dropout:
18
+ value: 0.035938233699532036
19
  language:
20
  value: fr.en
21
  learning_rate:
22
+ value: 0.0003284999261672522
23
  logging_steps:
24
  value: 1
25
  max_duration_in_seconds:
 
31
  num_train_epochs:
32
  value: 3
33
  output_dir:
34
+ value: ./
35
  per_device_eval_batch_size:
36
+ value: 8
37
  per_device_train_batch_size:
38
+ value: 8
39
  save_steps:
40
  value: 500
41
  task:
wandb/{sweep-39ci3gkf/config-a6039xud.yaml β†’ sweep-pvyx3mpp/config-o7jpar4x.yaml} RENAMED
@@ -15,11 +15,11 @@ gradient_accumulation_steps:
15
  greater_is_better:
16
  value: true
17
  hidden_dropout:
18
- value: 0.06862889720223829
19
  language:
20
  value: fr.en
21
  learning_rate:
22
- value: 0.0004848089062550082
23
  logging_steps:
24
  value: 1
25
  max_duration_in_seconds:
@@ -33,9 +33,9 @@ num_train_epochs:
33
  output_dir:
34
  value: ./
35
  per_device_eval_batch_size:
36
- value: 4
37
  per_device_train_batch_size:
38
- value: 4
39
  save_steps:
40
  value: 500
41
  task:
 
15
  greater_is_better:
16
  value: true
17
  hidden_dropout:
18
+ value: 0.04999238095195753
19
  language:
20
  value: fr.en
21
  learning_rate:
22
+ value: 0.0007702133913256148
23
  logging_steps:
24
  value: 1
25
  max_duration_in_seconds:
 
33
  output_dir:
34
  value: ./
35
  per_device_eval_batch_size:
36
+ value: 8
37
  per_device_train_batch_size:
38
+ value: 8
39
  save_steps:
40
  value: 500
41
  task:
wandb/{sweep-y3ak427l/config-ldsojzle.yaml β†’ sweep-pvyx3mpp/config-qk3ze7ok.yaml} RENAMED
@@ -15,11 +15,11 @@ gradient_accumulation_steps:
15
  greater_is_better:
16
  value: true
17
  hidden_dropout:
18
- value: 0.055722391000930585
19
  language:
20
  value: fr.en
21
  learning_rate:
22
- value: 0.0006457481677728278
23
  logging_steps:
24
  value: 1
25
  max_duration_in_seconds:
@@ -31,11 +31,11 @@ model_name_or_path:
31
  num_train_epochs:
32
  value: 3
33
  output_dir:
34
- value: ./output_dir
35
  per_device_eval_batch_size:
36
- value: 4
37
  per_device_train_batch_size:
38
- value: 4
39
  save_steps:
40
  value: 500
41
  task:
 
15
  greater_is_better:
16
  value: true
17
  hidden_dropout:
18
+ value: 0.18004101365999406
19
  language:
20
  value: fr.en
21
  learning_rate:
22
+ value: 0.0002757119755681108
23
  logging_steps:
24
  value: 1
25
  max_duration_in_seconds:
 
31
  num_train_epochs:
32
  value: 3
33
  output_dir:
34
+ value: ./
35
  per_device_eval_batch_size:
36
+ value: 8
37
  per_device_train_batch_size:
38
+ value: 8
39
  save_steps:
40
  value: 500
41
  task:
wandb/sweep-y3ak427l/config-qv3vjr6j.yaml DELETED
@@ -1,44 +0,0 @@
1
- wandb_version: 1
2
-
3
- eval_split_name:
4
- value: test
5
- eval_steps:
6
- value: 500
7
- evaluation_strategy:
8
- value: steps
9
- generation_max_length:
10
- value: 40
11
- generation_num_beams:
12
- value: 1
13
- gradient_accumulation_steps:
14
- value: 8
15
- greater_is_better:
16
- value: true
17
- hidden_dropout:
18
- value: 0.056807662149569525
19
- language:
20
- value: fr.en
21
- learning_rate:
22
- value: 0.0005558468401613797
23
- logging_steps:
24
- value: 1
25
- max_duration_in_seconds:
26
- value: 20
27
- metric_for_best_model:
28
- value: bleu
29
- model_name_or_path:
30
- value: ./
31
- num_train_epochs:
32
- value: 3
33
- output_dir:
34
- value: ./output_dir
35
- per_device_eval_batch_size:
36
- value: 4
37
- per_device_train_batch_size:
38
- value: 4
39
- save_steps:
40
- value: 500
41
- task:
42
- value: covost2
43
- warmup_steps:
44
- value: 500
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
wandb/sweep-y3ak427l/config-vz5ppd75.yaml DELETED
@@ -1,44 +0,0 @@
1
- wandb_version: 1
2
-
3
- eval_split_name:
4
- value: test
5
- eval_steps:
6
- value: 500
7
- evaluation_strategy:
8
- value: steps
9
- generation_max_length:
10
- value: 40
11
- generation_num_beams:
12
- value: 1
13
- gradient_accumulation_steps:
14
- value: 8
15
- greater_is_better:
16
- value: true
17
- hidden_dropout:
18
- value: 0.036619638921206475
19
- language:
20
- value: fr.en
21
- learning_rate:
22
- value: 0.00024391819705381628
23
- logging_steps:
24
- value: 1
25
- max_duration_in_seconds:
26
- value: 20
27
- metric_for_best_model:
28
- value: bleu
29
- model_name_or_path:
30
- value: ./
31
- num_train_epochs:
32
- value: 3
33
- output_dir:
34
- value: ./output_dir
35
- per_device_eval_batch_size:
36
- value: 4
37
- per_device_train_batch_size:
38
- value: 4
39
- save_steps:
40
- value: 500
41
- task:
42
- value: covost2
43
- warmup_steps:
44
- value: 500
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
wandb/sweep-y3ak427l/config-xur584bd.yaml DELETED
@@ -1,44 +0,0 @@
1
- wandb_version: 1
2
-
3
- eval_split_name:
4
- value: test
5
- eval_steps:
6
- value: 500
7
- evaluation_strategy:
8
- value: steps
9
- generation_max_length:
10
- value: 40
11
- generation_num_beams:
12
- value: 1
13
- gradient_accumulation_steps:
14
- value: 8
15
- greater_is_better:
16
- value: true
17
- hidden_dropout:
18
- value: 0.03413483050532159
19
- language:
20
- value: fr.en
21
- learning_rate:
22
- value: 0.00022086866790135088
23
- logging_steps:
24
- value: 1
25
- max_duration_in_seconds:
26
- value: 20
27
- metric_for_best_model:
28
- value: bleu
29
- model_name_or_path:
30
- value: ./
31
- num_train_epochs:
32
- value: 3
33
- output_dir:
34
- value: ./output_dir
35
- per_device_eval_batch_size:
36
- value: 4
37
- per_device_train_batch_size:
38
- value: 4
39
- save_steps:
40
- value: 500
41
- task:
42
- value: covost2
43
- warmup_steps:
44
- value: 500