ppo-LunarLander-v2 / config.json
sandychoii's picture
Upload PPO LunarLander-v2 trained agent
2b74e48
raw
history blame
13.1 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f82070af370>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f82070af400>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f82070af490>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f82070af520>", "_build": "<function ActorCriticPolicy._build at 0x7f82070af5b0>", "forward": "<function ActorCriticPolicy.forward at 0x7f82070af640>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f82070af6d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f82070af760>", "_predict": "<function ActorCriticPolicy._predict at 0x7f82070af7f0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f82070af880>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f82070af910>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f82070af9a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f82072a5a00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1000448, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1693832175042806091, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAECVxr05mKU/Ma7BvvV86b4QGwq+kBQfvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVJgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQDWcvFm4AjqMAWyUS/KMAXSUR0CaBXzbvgFYdX2UKGgGR0BweSo1k1/EaAdNUAFoCEdAmgdRnanJk3V9lChoBkdAcT4yLAHmimgHTQQBaAhHQJoIuiXY1511fZQoaAZHQG6e189fTkRoB004AWgIR0CaC3IQvpQldX2UKGgGR0BwfltUGVzIaAdNMgFoCEdAmg0KHfuTinV9lChoBkdAcZq48U21lWgHTS4BaAhHQJoOrayrxRV1fZQoaAZHQG/di/fwZwZoB01KAWgIR0CaEXqn3ta7dX2UKGgGR0BA5mBvrGBGaAdL52gIR0CaErLXtjTbdX2UKGgGR0Br77Ljghr4aAdNMAFoCEdAmhRJSWJJoXV9lChoBkdARYLLQokRjGgHS7JoCEdAmhU5ZntfHHV9lChoBkdAcJBQzUI9kmgHTTUBaAhHQJoX7VDrqt51fZQoaAZHQHAZ7cfvF3poB00mAWgIR0CaGX4yoGY8dX2UKGgGR0Byy/f8/D+BaAdNCgFoCEdAmhrtYOlO5HV9lChoBkdASzJoEjgQ6WgHS9doCEdAmhwUg0TDfnV9lChoBkdARkyNbTtsvmgHS8poCEdAmh5AMc6vJXV9lChoBkdAcLgcqOLiuWgHTREBaAhHQJoftGax5cF1fZQoaAZHQHJwxouf29NoB0v/aAhHQJohF2wFC9h1fZQoaAZHQHEB5bQkX1toB00ZAWgIR0CaIp9Gqgh9dX2UKGgGR0ByD1ev6j33aAdNggFoCEdAmiXBtHhCMXV9lChoBkdAcItvNeMQ3GgHTUABaAhHQJone3BpHqh1fZQoaAZHQGyJRsuWa+hoB00lAWgIR0CaKQcer+5wdX2UKGgGR0Bw44Qz1sciaAdNIQFoCEdAmixEXLvCuXV9lChoBkdAU4/YDklu32gHS61oCEdAmi1yHmA9V3V9lChoBkdAcAcCxeLNwGgHTSoBaAhHQJovfaSLZSN1fZQoaAZHQEnIinHeaa1oB0uhaAhHQJowkdKdxyZ1fZQoaAZHQHAuj7ALy+ZoB01GAWgIR0CaNF8nNPgvdX2UKGgGR0BvcYvpQk5ZaAdNKgFoCEdAmjYN0NjLCHV9lChoBkdARLNKIznA7GgHS+1oCEdAmjdVs1sLv3V9lChoBkdAcR0m1IAfdWgHTQkBaAhHQJo4tmbsniN1fZQoaAZHQGtt+F+NLlFoB00ZAWgIR0CaO0lzU7SzdX2UKGgGR0AZCLxZuAI6aAdLyWgIR0CaPFmxMWXUdX2UKGgGR0BvyoZ2pyZKaAdNIwFoCEdAmj3kdJaq0nV9lChoBkdAR2EVFhG6PWgHS/FoCEdAmj8qRp1zQ3V9lChoBkdAQAYQ176YV2gHS9ZoCEdAmkFMan7523V9lChoBkdAbqbev6j322gHTRYBaAhHQJpCxMPBi1B1fZQoaAZHQGy5Dy4FzMloB0v8aAhHQJpEINLDhtN1fZQoaAZHQHC0dEofCANoB00cAWgIR0CaRaPsiSq3dX2UKGgGR0BwiAxZdOZcaAdNAgFoCEdAmkgVu3trsXV9lChoBkdATaMzbeuV5mgHS9poCEdAmklDE3sHB3V9lChoBkdAb/DBHkLhJmgHTfQBaAhHQJpMBnyup0h1fZQoaAZHQG2vyU1Q66toB00gAWgIR0CaTp2CuloEdX2UKGgGR0BwIBssQNCraAdNDwFoCEdAmlAVnuiN83V9lChoBkdAcaxX0XgtOGgHTRQBaAhHQJpRj8WKuSx1fZQoaAZHQHLp5IlMRHxoB00cAWgIR0CaUxV2zOX3dX2UKGgGR0BvJPalDWsjaAdNMAFoCEdAmlXQd0aIe3V9lChoBkdAcTsxptaY/mgHTSQBaAhHQJpXYokRjBl1fZQoaAZHQEUe4MnZ00ZoB0vjaAhHQJpYmoYNy5t1fZQoaAZHQHFda9K28ZloB008AWgIR0CaWksMiKR/dX2UKGgGR0BvlF5hScbzaAdNGwFoCEdAml1OCXhOxnV9lChoBkdAcKE39JjDsWgHTTsBaAhHQJpfb7SApa11fZQoaAZHQG7X/YBeXzFoB00mAWgIR0CaYX3ZPEbYdX2UKGgGR0BviEK9f1HwaAdNCwFoCEdAmmTyzXz19XV9lChoBkdAb9WudPLxJGgHTQMBaAhHQJpmmjynUDx1fZQoaAZHQHAyJ3X7LuBoB01TAWgIR0CaaGsxO+IudX2UKGgGR0AwVVx0dRzjaAdL5mgIR0CaaaLyc0+DdX2UKGgGR0BLgyCnP3SKaAdLx2gIR0Caa7xoZhrndX2UKGgGR0Bt05TsIE8raAdNKwFoCEdAmm1d2X9it3V9lChoBkdAb5eSgXdj5WgHTSwBaAhHQJpu8hq0tyx1fZQoaAZHQFnpL4etCAtoB03oA2gIR0CadX1m8M/hdX2UKGgGR0BuklWluWKNaAdNKAFoCEdAmncch1Tzd3V9lChoBkdAcjGMjNY8uGgHTUsBaAhHQJp6B3u/k/91fZQoaAZHQHEejZ13dKxoB00iAWgIR0Cae5r2QGOddX2UKGgGR0BAmJFCswL3aAdL4mgIR0CafM31BdD6dX2UKGgGR0BQTBYRujynaAdL7GgIR0CafyP69CeFdX2UKGgGR0BwCfFUADJVaAdNNwFoCEdAmoDNBa9sanV9lChoBkdATyE7KaG5+mgHS+poCEdAmoIIaYNRWXV9lChoBkdAcE05WRzRyGgHTRoBaAhHQJqDfUDuBtl1fZQoaAZHQG1GI55qubJoB00oAWgIR0Cahhf9xZMddX2UKGgGR0Bwv+Fyq+8HaAdL/2gIR0Cah2zz3AVPdX2UKGgGR0Bvit8Aq/dqaAdNBwFoCEdAmojYvN/vv3V9lChoBkdACkErXlKbrmgHS9JoCEdAmon5fdAPd3V9lChoBkdAb3j/o7muDGgHTRUBaAhHQJqMiTvAoG91fZQoaAZHQHK0PGuLaVVoB003AWgIR0Cajmu5jH4odX2UKGgGR0Byq0yvcJt0aAdL1WgIR0Caj+6j3225dX2UKGgGR0BvxQ2ETQE7aAdNFQFoCEdAmpHeRgZ0jnV9lChoBkdAclGLxqfvnmgHTUIBaAhHQJqVmoZQ53l1fZQoaAZHQHH/Q0sOG0xoB00nAWgIR0Cal+KfnOjZdX2UKGgGR0A5kArxy4nXaAdLz2gIR0CamQLQ5WBCdX2UKGgGR0BvwoXoC+10aAdNMwFoCEdAmpqvCqIacnV9lChoBkdAcLHpwjt5U2gHTQoBaAhHQJqdOIFeOXF1fZQoaAZHQHJB0hePaL5oB0vlaAhHQJqebUAksz51fZQoaAZHQHDs2rS3LFJoB01CAWgIR0CaoCBxxT86dX2UKGgGR0A1v8w5/9YPaAdL2WgIR0CaoT+K0lZ6dX2UKGgGR0BTI+Sr5qM4aAdNBQFoCEdAmqOl2aDwpnV9lChoBkdAb+FjWkJrtWgHS/doCEdAmqTqwQlKLHV9lChoBkdAcKlX05EMLGgHTQEBaAhHQJqmTyrgflp1fZQoaAZHQHDrxPKuB+ZoB01RAWgIR0CaqR/k/8l5dX2UKGgGR0BxOMgFHJ9zaAdNUAFoCEdAmqrxqKxcFHV9lChoBkdAcVX0yP+4smgHTVkBaAhHQJqsv7sOXmh1fZQoaAZHQHAKutOmBOJoB00lAWgIR0Car4Tb349HdX2UKGgGR0Bx+uqWC2+gaAdNLQFoCEdAmrEY7aIvanV9lChoBkdAbdvW4mTkhmgHTSIBaAhHQJqyo7ihnJ11fZQoaAZHQG4nngP3BYVoB00UAWgIR0CatBWPtD2KdX2UKGgGR0BxC+FvhqCZaAdN4gFoCEdAmrexInSfDnV9lChoBkdAUe12HLzPKWgHS85oCEdAmrjDkdV/+nV9lChoBkdAKLwRoRIz32gHS+5oCEdAmroG/i5uqHV9lChoBkdAcClk56t1ZGgHS/poCEdAmrxoE0SAY3V9lChoBkdAcLUZIQOFxmgHTUIBaAhHQJq+J2A5Jbt1fZQoaAZHQHD2gOe8PFxoB01GAWgIR0Cav/RPoFFEdX2UKGgGR0BxvSEbo8p1aAdNTgFoCEdAmsJVNg0CR3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3908, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}