sanghoaxuan commited on
Commit
8e3cb23
1 Parent(s): 23644a2

Training complete

Browse files
README.md CHANGED
@@ -26,16 +26,16 @@ model-index:
26
  metrics:
27
  - name: Precision
28
  type: precision
29
- value: 0.9312108215110525
30
  - name: Recall
31
  type: recall
32
- value: 0.9500168293503871
33
  - name: F1
34
  type: f1
35
- value: 0.9405198267244252
36
  - name: Accuracy
37
  type: accuracy
38
- value: 0.9861953258374051
39
  ---
40
 
41
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -45,11 +45,11 @@ should probably proofread and complete it, then remove this comment. -->
45
 
46
  This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset.
47
  It achieves the following results on the evaluation set:
48
- - Loss: 0.0624
49
- - Precision: 0.9312
50
- - Recall: 0.9500
51
- - F1: 0.9405
52
- - Accuracy: 0.9862
53
 
54
  ## Model description
55
 
@@ -80,9 +80,9 @@ The following hyperparameters were used during training:
80
 
81
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
82
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
83
- | 0.0757 | 1.0 | 1756 | 0.0666 | 0.9057 | 0.9342 | 0.9197 | 0.9816 |
84
- | 0.0344 | 2.0 | 3512 | 0.0656 | 0.9316 | 0.9460 | 0.9387 | 0.9858 |
85
- | 0.021 | 3.0 | 5268 | 0.0624 | 0.9312 | 0.9500 | 0.9405 | 0.9862 |
86
 
87
 
88
  ### Framework versions
 
26
  metrics:
27
  - name: Precision
28
  type: precision
29
+ value: 0.9363711681855841
30
  - name: Recall
31
  type: recall
32
+ value: 0.9510265903736116
33
  - name: F1
34
  type: f1
35
+ value: 0.9436419804625532
36
  - name: Accuracy
37
  type: accuracy
38
+ value: 0.9860334373344322
39
  ---
40
 
41
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
45
 
46
  This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset.
47
  It achieves the following results on the evaluation set:
48
+ - Loss: 0.0682
49
+ - Precision: 0.9364
50
+ - Recall: 0.9510
51
+ - F1: 0.9436
52
+ - Accuracy: 0.9860
53
 
54
  ## Model description
55
 
 
80
 
81
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
82
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
83
+ | 0.0765 | 1.0 | 1756 | 0.0629 | 0.9146 | 0.9389 | 0.9266 | 0.9830 |
84
+ | 0.0344 | 2.0 | 3512 | 0.0717 | 0.9332 | 0.9455 | 0.9393 | 0.9846 |
85
+ | 0.0196 | 3.0 | 5268 | 0.0682 | 0.9364 | 0.9510 | 0.9436 | 0.9860 |
86
 
87
 
88
  ### Framework versions
runs/Aug30_09-42-40_DESKTOP-BKS1PK5/events.out.tfevents.1724985771.DESKTOP-BKS1PK5.32632.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:4895420f3ecf3ff0a2f8c9db60a10a62b0ff2685ffe44d853acd624aca08b548
3
- size 8300
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c4e41f8ae206af0c102b572c5ecf3caf0f6fce6f8709bd865031a3dd8a8436b0
3
+ size 9126