sarkii commited on
Commit
b87ca0e
1 Parent(s): b7fd344

Delete README.md

Browse files
Files changed (1) hide show
  1. README.md +0 -144
README.md DELETED
@@ -1,144 +0,0 @@
1
- ---
2
- library_name: sentence-transformers
3
- tags:
4
- - sentence-transformers
5
- - sentence-similarity
6
- - feature-extraction
7
- base_model: robzchhangte/MizBERT
8
- pipeline_tag: sentence-similarity
9
- license: apache-2.0
10
- ---
11
-
12
- # MizoEmbed
13
-
14
- MizoEmbed is the first embedding model developed specifically for the Mizo language. This pioneering model provides vector representations of Mizo text, enabling various natural language processing tasks and applications for the underrepresented language.
15
-
16
- The model maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
17
-
18
- ## Model Details
19
-
20
- ### Model Description
21
- - **Model Type:** Sentence Transformer
22
- - **Base model:** [robzchhangte/MizBERT](https://huggingface.co/robzchhangte/MizBERT) <!-- at revision 48fbb5f83050aa1b3d4565e784228c0b621815a7 -->
23
- - **Embedding Dimension:** 768 tokens
24
- - **Language:** Mizo
25
-
26
-
27
-
28
- ## Usage
29
-
30
- ### Direct Usage (Sentence Transformers)
31
-
32
- First install the Sentence Transformers library:
33
-
34
- ```bash
35
- pip install -U sentence-transformers
36
- ```
37
-
38
- Then you can load this model and run inference.
39
- ```python
40
- from sentence_transformers import SentenceTransformer
41
-
42
- # Download from the 🤗 Hub
43
- model = SentenceTransformer("Lms18/mizo_embed")
44
- # Run inference
45
- sentences = [
46
- 'Alassio hian he tuipui kama resort lian pathumte chu a ti zo a, thlasik khaw vawt tak avanga a huante enkawl chu a chhuang hle.',
47
- 'Alassio-a thlasik lum chuan a huan mawi tak takte chu a siam a ni.',
48
- 'Snowboarder pakhat chu snowboarding a ni.',
49
- ]
50
- embeddings = model.encode(sentences)
51
- print(embeddings.shape)
52
- # [3, 768]
53
-
54
- # Get the similarity scores for the embeddings
55
- similarities = model.similarity(embeddings, embeddings)
56
- print(similarities.shape)
57
- # [3, 3]
58
- ```
59
-
60
- <!--
61
- ### Direct Usage (Transformers)
62
-
63
- <details><summary>Click to see the direct usage in Transformers</summary>
64
-
65
- </details>
66
- -->
67
-
68
- <!--
69
- ### Downstream Usage (Sentence Transformers)
70
-
71
- You can finetune this model on your own dataset.
72
-
73
- <details><summary>Click to expand</summary>
74
-
75
- </details>
76
- -->
77
-
78
- <!--
79
- ### Out-of-Scope Use
80
-
81
- *List how the model may foreseeably be misused and address what users ought not to do with the model.*
82
- -->
83
-
84
- <!--
85
- ## Bias, Risks and Limitations
86
-
87
- *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
88
- -->
89
-
90
- <!--
91
- ### Recommendations
92
-
93
- *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
94
- -->
95
-
96
- ## License
97
- This model is licensed under the Apache 2.0 License. See the [LICENSE](LICENSE) file for details.
98
-
99
- ## Citation
100
-
101
- ### BibTeX
102
-
103
- #### Sentence Transformers
104
- ```bibtex
105
- @inproceedings{reimers-2019-sentence-bert,
106
- title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
107
- author = "Reimers, Nils and Gurevych, Iryna",
108
- booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
109
- month = "11",
110
- year = "2019",
111
- publisher = "Association for Computational Linguistics",
112
- url = "https://arxiv.org/abs/1908.10084",
113
- }
114
- ```
115
-
116
- #### MultipleNegativesRankingLoss
117
- ```bibtex
118
- @misc{henderson2017efficient,
119
- title={Efficient Natural Language Response Suggestion for Smart Reply},
120
- author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
121
- year={2017},
122
- eprint={1705.00652},
123
- archivePrefix={arXiv},
124
- primaryClass={cs.CL}
125
- }
126
- ```
127
-
128
- <!--
129
- ## Glossary
130
-
131
- *Clearly define terms in order to be accessible across audiences.*
132
- -->
133
-
134
- <!--
135
- ## Model Card Authors
136
-
137
- *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
138
- -->
139
-
140
- <!--
141
- ## Model Card Contact
142
-
143
- *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
144
- -->