--- license: mit datasets: - sartajbhuvaji/gutenberg language: - en base_model: - openai-community/gpt2 pipeline_tag: text-classification library_name: transformers tags: - text-classification --- ```python from transformers import GPT2ForSequenceClassification, GPT2Tokenizer from datasets import load_dataset from transformers import pipeline import pandas as pd # Load the model from Hugging Face model = GPT2ForSequenceClassification.from_pretrained('sartajbhuvaji/gutenberg-gpt2') tokenizer = GPT2Tokenizer.from_pretrained("sartajbhuvaji/gutenberg-gpt2") # Create a text classification pipeline classifier = pipeline("text-classification", model=model, tokenizer=tokenizer) # Test the pipeline result = classifier("This is a great book!") print(result) # [{'label': 'LABEL_7', 'score': 0.8302432298660278}] # Test the pipeline on a document doc_id = 1 doc_text = df.loc[df['DocID'] == doc_id, 'Text'].values[0] result = classifier(doc_text[:1024]) print(result) # [{'label': 'LABEL_4', 'score': 0.6285566091537476}] ```