Mollel commited on
Commit
8ac18f2
1 Parent(s): 2927184

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,569 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: []
3
+ library_name: sentence-transformers
4
+ tags:
5
+ - sentence-transformers
6
+ - sentence-similarity
7
+ - feature-extraction
8
+ - generated_from_trainer
9
+ - dataset_size:557850
10
+ - loss:MatryoshkaLoss
11
+ - loss:MultipleNegativesRankingLoss
12
+ base_model: sentence-transformers/all-MiniLM-L6-v2
13
+ datasets: []
14
+ metrics:
15
+ - pearson_cosine
16
+ - spearman_cosine
17
+ - pearson_manhattan
18
+ - spearman_manhattan
19
+ - pearson_euclidean
20
+ - spearman_euclidean
21
+ - pearson_dot
22
+ - spearman_dot
23
+ - pearson_max
24
+ - spearman_max
25
+ widget:
26
+ - source_sentence: Mwanamume aliyepangwa vizuri anasimama kwa mguu mmoja karibu na
27
+ pwani safi ya bahari.
28
+ sentences:
29
+ - mtu anacheka wakati wa kufua nguo
30
+ - Mwanamume fulani yuko nje karibu na ufuo wa bahari.
31
+ - Mwanamume fulani ameketi kwenye sofa yake.
32
+ - source_sentence: Mwanamume mwenye ngozi nyeusi akivuta sigareti karibu na chombo
33
+ cha taka cha kijani.
34
+ sentences:
35
+ - Karibu na chombo cha taka mwanamume huyo alisimama na kuvuta sigareti
36
+ - Kitanda ni chafu.
37
+ - Alipokuwa kwenye dimbwi la kuogelea mvulana huyo mwenye ugonjwa wa albino alijihadhari
38
+ na jua kupita kiasi
39
+ - source_sentence: Mwanamume kijana mwenye nywele nyekundu anaketi ukutani akisoma
40
+ gazeti huku mwanamke na msichana mchanga wakipita.
41
+ sentences:
42
+ - Mwanamume aliyevalia shati la bluu amegonga ukuta kando ya barabara na gari la
43
+ bluu na gari nyekundu lenye maji nyuma.
44
+ - Mwanamume mchanga anatazama gazeti huku wanawake wawili wakipita karibu naye.
45
+ - Mwanamume huyo mchanga analala huku Mama akimwongoza binti yake kwenye bustani.
46
+ - source_sentence: Wasichana wako nje.
47
+ sentences:
48
+ - Wasichana wawili wakisafiri kwenye sehemu ya kusisimua.
49
+ - Kuna watu watatu wakiongoza gari linaloweza kugeuzwa-geuzwa wakipita watu wengine.
50
+ - Wasichana watatu wamesimama pamoja katika chumba, mmoja anasikiliza, mwingine
51
+ anaandika ukutani na wa tatu anaongea nao.
52
+ - source_sentence: Mwanamume aliyevalia koti la bluu la kuzuia upepo, amelala uso
53
+ chini kwenye benchi ya bustani, akiwa na chupa ya pombe iliyofungwa kwenye mojawapo
54
+ ya miguu ya benchi.
55
+ sentences:
56
+ - Mwanamume amelala uso chini kwenye benchi ya bustani.
57
+ - Mwanamke anaunganisha uzi katika mipira kando ya rundo la mipira
58
+ - Mwanamume fulani anacheza dansi kwenye klabu hiyo akifungua chupa.
59
+ pipeline_tag: sentence-similarity
60
+ model-index:
61
+ - name: SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
62
+ results:
63
+ - task:
64
+ type: semantic-similarity
65
+ name: Semantic Similarity
66
+ dataset:
67
+ name: sts test 256
68
+ type: sts-test-256
69
+ metrics:
70
+ - type: pearson_cosine
71
+ value: 0.6942864389866223
72
+ name: Pearson Cosine
73
+ - type: spearman_cosine
74
+ value: 0.6856061049537777
75
+ name: Spearman Cosine
76
+ - type: pearson_manhattan
77
+ value: 0.6885375818451587
78
+ name: Pearson Manhattan
79
+ - type: spearman_manhattan
80
+ value: 0.6872214410233022
81
+ name: Spearman Manhattan
82
+ - type: pearson_euclidean
83
+ value: 0.6914785578290242
84
+ name: Pearson Euclidean
85
+ - type: spearman_euclidean
86
+ value: 0.6905722127311041
87
+ name: Spearman Euclidean
88
+ - type: pearson_dot
89
+ value: 0.6799233396985102
90
+ name: Pearson Dot
91
+ - type: spearman_dot
92
+ value: 0.667743621858275
93
+ name: Spearman Dot
94
+ - type: pearson_max
95
+ value: 0.6942864389866223
96
+ name: Pearson Max
97
+ - type: spearman_max
98
+ value: 0.6905722127311041
99
+ name: Spearman Max
100
+ - task:
101
+ type: semantic-similarity
102
+ name: Semantic Similarity
103
+ dataset:
104
+ name: sts test 128
105
+ type: sts-test-128
106
+ metrics:
107
+ - type: pearson_cosine
108
+ value: 0.6891584502617563
109
+ name: Pearson Cosine
110
+ - type: spearman_cosine
111
+ value: 0.6814103986417178
112
+ name: Spearman Cosine
113
+ - type: pearson_manhattan
114
+ value: 0.6968187377070036
115
+ name: Pearson Manhattan
116
+ - type: spearman_manhattan
117
+ value: 0.6920002958564649
118
+ name: Spearman Manhattan
119
+ - type: pearson_euclidean
120
+ value: 0.7000628001426884
121
+ name: Pearson Euclidean
122
+ - type: spearman_euclidean
123
+ value: 0.6960243670969477
124
+ name: Spearman Euclidean
125
+ - type: pearson_dot
126
+ value: 0.6364862920838279
127
+ name: Pearson Dot
128
+ - type: spearman_dot
129
+ value: 0.6189765115954626
130
+ name: Spearman Dot
131
+ - type: pearson_max
132
+ value: 0.7000628001426884
133
+ name: Pearson Max
134
+ - type: spearman_max
135
+ value: 0.6960243670969477
136
+ name: Spearman Max
137
+ - task:
138
+ type: semantic-similarity
139
+ name: Semantic Similarity
140
+ dataset:
141
+ name: sts test 64
142
+ type: sts-test-64
143
+ metrics:
144
+ - type: pearson_cosine
145
+ value: 0.6782226699898293
146
+ name: Pearson Cosine
147
+ - type: spearman_cosine
148
+ value: 0.6755345411699644
149
+ name: Spearman Cosine
150
+ - type: pearson_manhattan
151
+ value: 0.6962074727926596
152
+ name: Pearson Manhattan
153
+ - type: spearman_manhattan
154
+ value: 0.689094339218281
155
+ name: Spearman Manhattan
156
+ - type: pearson_euclidean
157
+ value: 0.6996133052307816
158
+ name: Pearson Euclidean
159
+ - type: spearman_euclidean
160
+ value: 0.6937517032138506
161
+ name: Spearman Euclidean
162
+ - type: pearson_dot
163
+ value: 0.58122590177631
164
+ name: Pearson Dot
165
+ - type: spearman_dot
166
+ value: 0.5606971476688047
167
+ name: Spearman Dot
168
+ - type: pearson_max
169
+ value: 0.6996133052307816
170
+ name: Pearson Max
171
+ - type: spearman_max
172
+ value: 0.6937517032138506
173
+ name: Spearman Max
174
+ ---
175
+
176
+ # SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
177
+
178
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
179
+
180
+ ## Model Details
181
+
182
+ ### Model Description
183
+ - **Model Type:** Sentence Transformer
184
+ - **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) <!-- at revision 8b3219a92973c328a8e22fadcfa821b5dc75636a -->
185
+ - **Maximum Sequence Length:** 256 tokens
186
+ - **Output Dimensionality:** 384 tokens
187
+ - **Similarity Function:** Cosine Similarity
188
+ <!-- - **Training Dataset:** Unknown -->
189
+ <!-- - **Language:** Unknown -->
190
+ <!-- - **License:** Unknown -->
191
+
192
+ ### Model Sources
193
+
194
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
195
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
196
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
197
+
198
+ ### Full Model Architecture
199
+
200
+ ```
201
+ SentenceTransformer(
202
+ (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
203
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
204
+ (2): Normalize()
205
+ )
206
+ ```
207
+
208
+ ## Usage
209
+
210
+ ### Direct Usage (Sentence Transformers)
211
+
212
+ First install the Sentence Transformers library:
213
+
214
+ ```bash
215
+ pip install -U sentence-transformers
216
+ ```
217
+
218
+ Then you can load this model and run inference.
219
+ ```python
220
+ from sentence_transformers import SentenceTransformer
221
+
222
+ # Download from the 🤗 Hub
223
+ model = SentenceTransformer("sartifyllc/swahili-all-MiniLM-L6-v2-nli-matryoshka")
224
+ # Run inference
225
+ sentences = [
226
+ 'Mwanamume aliyevalia koti la bluu la kuzuia upepo, amelala uso chini kwenye benchi ya bustani, akiwa na chupa ya pombe iliyofungwa kwenye mojawapo ya miguu ya benchi.',
227
+ 'Mwanamume amelala uso chini kwenye benchi ya bustani.',
228
+ 'Mwanamume fulani anacheza dansi kwenye klabu hiyo akifungua chupa.',
229
+ ]
230
+ embeddings = model.encode(sentences)
231
+ print(embeddings.shape)
232
+ # [3, 384]
233
+
234
+ # Get the similarity scores for the embeddings
235
+ similarities = model.similarity(embeddings, embeddings)
236
+ print(similarities.shape)
237
+ # [3, 3]
238
+ ```
239
+
240
+ <!--
241
+ ### Direct Usage (Transformers)
242
+
243
+ <details><summary>Click to see the direct usage in Transformers</summary>
244
+
245
+ </details>
246
+ -->
247
+
248
+ <!--
249
+ ### Downstream Usage (Sentence Transformers)
250
+
251
+ You can finetune this model on your own dataset.
252
+
253
+ <details><summary>Click to expand</summary>
254
+
255
+ </details>
256
+ -->
257
+
258
+ <!--
259
+ ### Out-of-Scope Use
260
+
261
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
262
+ -->
263
+
264
+ ## Evaluation
265
+
266
+ ### Metrics
267
+
268
+ #### Semantic Similarity
269
+ * Dataset: `sts-test-256`
270
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
271
+
272
+ | Metric | Value |
273
+ |:--------------------|:-----------|
274
+ | pearson_cosine | 0.6943 |
275
+ | **spearman_cosine** | **0.6856** |
276
+ | pearson_manhattan | 0.6885 |
277
+ | spearman_manhattan | 0.6872 |
278
+ | pearson_euclidean | 0.6915 |
279
+ | spearman_euclidean | 0.6906 |
280
+ | pearson_dot | 0.6799 |
281
+ | spearman_dot | 0.6677 |
282
+ | pearson_max | 0.6943 |
283
+ | spearman_max | 0.6906 |
284
+
285
+ #### Semantic Similarity
286
+ * Dataset: `sts-test-128`
287
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
288
+
289
+ | Metric | Value |
290
+ |:--------------------|:-----------|
291
+ | pearson_cosine | 0.6892 |
292
+ | **spearman_cosine** | **0.6814** |
293
+ | pearson_manhattan | 0.6968 |
294
+ | spearman_manhattan | 0.692 |
295
+ | pearson_euclidean | 0.7001 |
296
+ | spearman_euclidean | 0.696 |
297
+ | pearson_dot | 0.6365 |
298
+ | spearman_dot | 0.619 |
299
+ | pearson_max | 0.7001 |
300
+ | spearman_max | 0.696 |
301
+
302
+ #### Semantic Similarity
303
+ * Dataset: `sts-test-64`
304
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
305
+
306
+ | Metric | Value |
307
+ |:--------------------|:-----------|
308
+ | pearson_cosine | 0.6782 |
309
+ | **spearman_cosine** | **0.6755** |
310
+ | pearson_manhattan | 0.6962 |
311
+ | spearman_manhattan | 0.6891 |
312
+ | pearson_euclidean | 0.6996 |
313
+ | spearman_euclidean | 0.6938 |
314
+ | pearson_dot | 0.5812 |
315
+ | spearman_dot | 0.5607 |
316
+ | pearson_max | 0.6996 |
317
+ | spearman_max | 0.6938 |
318
+
319
+ <!--
320
+ ## Bias, Risks and Limitations
321
+
322
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
323
+ -->
324
+
325
+ <!--
326
+ ### Recommendations
327
+
328
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
329
+ -->
330
+
331
+ ## Training Details
332
+
333
+ ### Training Hyperparameters
334
+ #### Non-Default Hyperparameters
335
+
336
+ - `per_device_train_batch_size`: 64
337
+ - `per_device_eval_batch_size`: 64
338
+ - `num_train_epochs`: 1
339
+ - `warmup_ratio`: 0.1
340
+ - `fp16`: True
341
+ - `batch_sampler`: no_duplicates
342
+
343
+ #### All Hyperparameters
344
+ <details><summary>Click to expand</summary>
345
+
346
+ - `overwrite_output_dir`: False
347
+ - `do_predict`: False
348
+ - `prediction_loss_only`: True
349
+ - `per_device_train_batch_size`: 64
350
+ - `per_device_eval_batch_size`: 64
351
+ - `per_gpu_train_batch_size`: None
352
+ - `per_gpu_eval_batch_size`: None
353
+ - `gradient_accumulation_steps`: 1
354
+ - `eval_accumulation_steps`: None
355
+ - `learning_rate`: 5e-05
356
+ - `weight_decay`: 0.0
357
+ - `adam_beta1`: 0.9
358
+ - `adam_beta2`: 0.999
359
+ - `adam_epsilon`: 1e-08
360
+ - `max_grad_norm`: 1.0
361
+ - `num_train_epochs`: 1
362
+ - `max_steps`: -1
363
+ - `lr_scheduler_type`: linear
364
+ - `lr_scheduler_kwargs`: {}
365
+ - `warmup_ratio`: 0.1
366
+ - `warmup_steps`: 0
367
+ - `log_level`: passive
368
+ - `log_level_replica`: warning
369
+ - `log_on_each_node`: True
370
+ - `logging_nan_inf_filter`: True
371
+ - `save_safetensors`: True
372
+ - `save_on_each_node`: False
373
+ - `save_only_model`: False
374
+ - `no_cuda`: False
375
+ - `use_cpu`: False
376
+ - `use_mps_device`: False
377
+ - `seed`: 42
378
+ - `data_seed`: None
379
+ - `jit_mode_eval`: False
380
+ - `use_ipex`: False
381
+ - `bf16`: False
382
+ - `fp16`: True
383
+ - `fp16_opt_level`: O1
384
+ - `half_precision_backend`: auto
385
+ - `bf16_full_eval`: False
386
+ - `fp16_full_eval`: False
387
+ - `tf32`: None
388
+ - `local_rank`: 0
389
+ - `ddp_backend`: None
390
+ - `tpu_num_cores`: None
391
+ - `tpu_metrics_debug`: False
392
+ - `debug`: []
393
+ - `dataloader_drop_last`: False
394
+ - `dataloader_num_workers`: 0
395
+ - `dataloader_prefetch_factor`: None
396
+ - `past_index`: -1
397
+ - `disable_tqdm`: False
398
+ - `remove_unused_columns`: True
399
+ - `label_names`: None
400
+ - `load_best_model_at_end`: False
401
+ - `ignore_data_skip`: False
402
+ - `fsdp`: []
403
+ - `fsdp_min_num_params`: 0
404
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
405
+ - `fsdp_transformer_layer_cls_to_wrap`: None
406
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'gradient_accumulation_kwargs': None}
407
+ - `deepspeed`: None
408
+ - `label_smoothing_factor`: 0.0
409
+ - `optim`: adamw_torch
410
+ - `optim_args`: None
411
+ - `adafactor`: False
412
+ - `group_by_length`: False
413
+ - `length_column_name`: length
414
+ - `ddp_find_unused_parameters`: None
415
+ - `ddp_bucket_cap_mb`: None
416
+ - `ddp_broadcast_buffers`: False
417
+ - `dataloader_pin_memory`: True
418
+ - `dataloader_persistent_workers`: False
419
+ - `skip_memory_metrics`: True
420
+ - `use_legacy_prediction_loop`: False
421
+ - `push_to_hub`: False
422
+ - `resume_from_checkpoint`: None
423
+ - `hub_model_id`: None
424
+ - `hub_strategy`: every_save
425
+ - `hub_private_repo`: False
426
+ - `hub_always_push`: False
427
+ - `gradient_checkpointing`: False
428
+ - `gradient_checkpointing_kwargs`: None
429
+ - `include_inputs_for_metrics`: False
430
+ - `eval_do_concat_batches`: True
431
+ - `fp16_backend`: auto
432
+ - `push_to_hub_model_id`: None
433
+ - `push_to_hub_organization`: None
434
+ - `mp_parameters`:
435
+ - `auto_find_batch_size`: False
436
+ - `full_determinism`: False
437
+ - `torchdynamo`: None
438
+ - `ray_scope`: last
439
+ - `ddp_timeout`: 1800
440
+ - `torch_compile`: False
441
+ - `torch_compile_backend`: None
442
+ - `torch_compile_mode`: None
443
+ - `dispatch_batches`: None
444
+ - `split_batches`: None
445
+ - `include_tokens_per_second`: False
446
+ - `include_num_input_tokens_seen`: False
447
+ - `neftune_noise_alpha`: None
448
+ - `optim_target_modules`: None
449
+ - `batch_sampler`: no_duplicates
450
+ - `multi_dataset_batch_sampler`: proportional
451
+
452
+ </details>
453
+
454
+ ### Training Logs
455
+ | Epoch | Step | Training Loss | sts-test-128_spearman_cosine | sts-test-256_spearman_cosine | sts-test-64_spearman_cosine |
456
+ |:------:|:----:|:-------------:|:----------------------------:|:----------------------------:|:---------------------------:|
457
+ | 0.0229 | 100 | 12.9498 | - | - | - |
458
+ | 0.0459 | 200 | 9.9003 | - | - | - |
459
+ | 0.0688 | 300 | 8.6333 | - | - | - |
460
+ | 0.0918 | 400 | 8.0124 | - | - | - |
461
+ | 0.1147 | 500 | 7.2322 | - | - | - |
462
+ | 0.1376 | 600 | 6.936 | - | - | - |
463
+ | 0.1606 | 700 | 7.2855 | - | - | - |
464
+ | 0.1835 | 800 | 6.5985 | - | - | - |
465
+ | 0.2065 | 900 | 6.4369 | - | - | - |
466
+ | 0.2294 | 1000 | 6.2767 | - | - | - |
467
+ | 0.2524 | 1100 | 6.4011 | - | - | - |
468
+ | 0.2753 | 1200 | 6.1288 | - | - | - |
469
+ | 0.2982 | 1300 | 6.1466 | - | - | - |
470
+ | 0.3212 | 1400 | 5.9279 | - | - | - |
471
+ | 0.3441 | 1500 | 5.8959 | - | - | - |
472
+ | 0.3671 | 1600 | 5.5911 | - | - | - |
473
+ | 0.3900 | 1700 | 5.5258 | - | - | - |
474
+ | 0.4129 | 1800 | 5.5835 | - | - | - |
475
+ | 0.4359 | 1900 | 5.4701 | - | - | - |
476
+ | 0.4588 | 2000 | 5.3888 | - | - | - |
477
+ | 0.4818 | 2100 | 5.4474 | - | - | - |
478
+ | 0.5047 | 2200 | 5.1465 | - | - | - |
479
+ | 0.5276 | 2300 | 5.28 | - | - | - |
480
+ | 0.5506 | 2400 | 5.4184 | - | - | - |
481
+ | 0.5735 | 2500 | 5.3811 | - | - | - |
482
+ | 0.5965 | 2600 | 5.2171 | - | - | - |
483
+ | 0.6194 | 2700 | 5.3212 | - | - | - |
484
+ | 0.6423 | 2800 | 5.2493 | - | - | - |
485
+ | 0.6653 | 2900 | 5.459 | - | - | - |
486
+ | 0.6882 | 3000 | 5.068 | - | - | - |
487
+ | 0.7112 | 3100 | 5.1415 | - | - | - |
488
+ | 0.7341 | 3200 | 5.0764 | - | - | - |
489
+ | 0.7571 | 3300 | 6.1606 | - | - | - |
490
+ | 0.7800 | 3400 | 6.1028 | - | - | - |
491
+ | 0.8029 | 3500 | 5.7441 | - | - | - |
492
+ | 0.8259 | 3600 | 5.7148 | - | - | - |
493
+ | 0.8488 | 3700 | 5.4799 | - | - | - |
494
+ | 0.8718 | 3800 | 5.4396 | - | - | - |
495
+ | 0.8947 | 3900 | 5.3519 | - | - | - |
496
+ | 0.9176 | 4000 | 5.2394 | - | - | - |
497
+ | 0.9406 | 4100 | 5.2311 | - | - | - |
498
+ | 0.9635 | 4200 | 5.3486 | - | - | - |
499
+ | 0.9865 | 4300 | 5.215 | - | - | - |
500
+ | 1.0 | 4359 | - | 0.6814 | 0.6856 | 0.6755 |
501
+
502
+
503
+ ### Framework Versions
504
+ - Python: 3.11.9
505
+ - Sentence Transformers: 3.0.1
506
+ - Transformers: 4.40.1
507
+ - PyTorch: 2.3.0+cu121
508
+ - Accelerate: 0.29.3
509
+ - Datasets: 2.19.0
510
+ - Tokenizers: 0.19.1
511
+
512
+ ## Citation
513
+
514
+ ### BibTeX
515
+
516
+ #### Sentence Transformers
517
+ ```bibtex
518
+ @inproceedings{reimers-2019-sentence-bert,
519
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
520
+ author = "Reimers, Nils and Gurevych, Iryna",
521
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
522
+ month = "11",
523
+ year = "2019",
524
+ publisher = "Association for Computational Linguistics",
525
+ url = "https://arxiv.org/abs/1908.10084",
526
+ }
527
+ ```
528
+
529
+ #### MatryoshkaLoss
530
+ ```bibtex
531
+ @misc{kusupati2024matryoshka,
532
+ title={Matryoshka Representation Learning},
533
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
534
+ year={2024},
535
+ eprint={2205.13147},
536
+ archivePrefix={arXiv},
537
+ primaryClass={cs.LG}
538
+ }
539
+ ```
540
+
541
+ #### MultipleNegativesRankingLoss
542
+ ```bibtex
543
+ @misc{henderson2017efficient,
544
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
545
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
546
+ year={2017},
547
+ eprint={1705.00652},
548
+ archivePrefix={arXiv},
549
+ primaryClass={cs.CL}
550
+ }
551
+ ```
552
+
553
+ <!--
554
+ ## Glossary
555
+
556
+ *Clearly define terms in order to be accessible across audiences.*
557
+ -->
558
+
559
+ <!--
560
+ ## Model Card Authors
561
+
562
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
563
+ -->
564
+
565
+ <!--
566
+ ## Model Card Contact
567
+
568
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
569
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/all-MiniLM-L6-v2",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 384,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 1536,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 6,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.40.1",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 30522
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.40.1",
5
+ "pytorch": "2.3.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:64199796093dcf298a92deced68231b013454440c2ea684c9c12e453e91b5b7f
3
+ size 90864192
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 256,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "max_length": 128,
50
+ "model_max_length": 256,
51
+ "never_split": null,
52
+ "pad_to_multiple_of": null,
53
+ "pad_token": "[PAD]",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
+ "sep_token": "[SEP]",
57
+ "stride": 0,
58
+ "strip_accents": null,
59
+ "tokenize_chinese_chars": true,
60
+ "tokenizer_class": "BertTokenizer",
61
+ "truncation_side": "right",
62
+ "truncation_strategy": "longest_first",
63
+ "unk_token": "[UNK]"
64
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff