|
|
|
|
|
|
|
|
|
from typing import Optional, Union |
|
|
|
import numpy as np |
|
import torch |
|
import transformers |
|
|
|
|
|
class ShukaProcessor(transformers.ProcessorMixin): |
|
""" |
|
Constructs an Shuka processor which wraps an audio processor and a tokenizer into a single processor. |
|
|
|
Args: |
|
audio_processor: The audio processor for the audio encoder. |
|
tokenizer: The tokenizer for the language model. |
|
""" |
|
|
|
attributes = ["audio_processor", "tokenizer"] |
|
audio_processor_class = ( |
|
"Wav2Vec2Processor", |
|
"SeamlessM4TFeatureExtractor", |
|
"WhisperProcessor", |
|
) |
|
tokenizer_class = ( |
|
"PreTrainedTokenizer", |
|
"PreTrainedTokenizerFast", |
|
) |
|
|
|
tokenizer: transformers.PreTrainedTokenizerBase |
|
audio_processor: transformers.ProcessorMixin |
|
|
|
def __init__( |
|
self, |
|
audio_processor=None, |
|
tokenizer=None, |
|
audio_padding: str = "longest", |
|
encoder_ds_factor: int = 320, |
|
stack_factor: int = 8, |
|
audio_placeholder: str = "<|audio|>", |
|
): |
|
""" |
|
Args: |
|
audio_processor: The audio processor for the audio encoder. |
|
tokenizer: The tokenizer for the language model. |
|
audio_padding: The padding strategy for the audio encoder. |
|
encoder_ds_factor: The downsample factor of the audio encoder. |
|
stack_factor: The factor by which the audio encoder output is stacked in the multimodal projector. |
|
audio_placeholder: The placeholder for the audio in the text. |
|
""" |
|
self.audio_padding = audio_padding |
|
self.encoder_ds_factor = encoder_ds_factor |
|
self.stack_factor = stack_factor |
|
self.audio_placeholder = audio_placeholder |
|
self.audio_token_replacement = tokenizer.eos_token |
|
assert ( |
|
self.audio_token_replacement is not None |
|
), "The tokenizer has no EOS token. Cannot recover." |
|
super().__init__(audio_processor=audio_processor, tokenizer=tokenizer) |
|
|
|
def __call__( |
|
self, |
|
text: Optional[str] = None, |
|
audio: Optional[Union[np.ndarray, torch.Tensor]] = None, |
|
sampling_rate: Optional[int] = None, |
|
return_tensors: Optional[ |
|
Union[str, transformers.TensorType] |
|
] = transformers.TensorType.PYTORCH, |
|
**kwargs, |
|
) -> transformers.BatchFeature: |
|
""" |
|
Main method to prepare for the model one text sequence and audio. This method forwards the `text` |
|
and `kwargs` arguments to PreTrainedTokenizerFast's [`~PreTrainedTokenizerFast.__call__`] if `text` is not `None` to encode |
|
the text. To prepare the audio(s), this method forwards the `audio`, `sampling_rate` and `kwargs` arguments to |
|
audio processor's [`~Wav2Vec2Processor.__call__`] if `audio` is not `None`. Please refer to the docstring |
|
of the above two methods for more information. |
|
|
|
Args: |
|
text (`str`, `List[str]`): |
|
The sequence to be encoded. Sequence can be a string or (pretokenized string). |
|
audio (`np.ndarray`, `torch.Tensor`, `List[np.ndarray]`, `List[torch.Tensor]`): |
|
The audio to be prepared. Audio can be NumPy array or PyTorch tensor. In case of a |
|
NumPy array/PyTorch tensor, each audio should be of shape (C, T), where C is a number of channels, and T the |
|
sample length of the audio. |
|
sampling_rate (`int`, *optional*, defaults to 16000): |
|
Sampling rate of the input audio. We expect 16kHz audio. Don't change this value unless you know what |
|
you are doing. |
|
return_tensors (`str` or [`~utils.TensorType`], *optional*): |
|
If set, will return tensors of a particular framework. Acceptable values are: |
|
|
|
- `'tf'`: Return TensorFlow `tf.constant` objects. |
|
- `'pt'`: Return PyTorch `torch.Tensor` objects. |
|
- `'np'`: Return NumPy `np.ndarray` objects. |
|
- `'jax'`: Return JAX `jnp.ndarray` objects. |
|
|
|
Returns: |
|
[`BatchFeature`]: A [`BatchFeature`] with the following fields: |
|
|
|
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`. |
|
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when |
|
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not |
|
`None`). |
|
- **audio_values** -- Processed audio values to be fed to a model. Returned when `audio` is not `None`. |
|
- **audio_token_len** -- Predicted number of audio frames: this value is guaranteed to be a close upper bound. |
|
Returned when `audio` is not `None`. |
|
- **audio_token_start_idx** -- The index in the tokenized text where the audio starts. Returned when `audio` is not `None`. |
|
""" |
|
|
|
data = {} |
|
audio_embed_frames = 0 |
|
if audio is not None and len(audio) > 0: |
|
if self.audio_padding == "max_length": |
|
|
|
assert sampling_rate is not None, "Sampling rate must be provided." |
|
audio_len = 30 * sampling_rate |
|
else: |
|
audio_len = audio.shape[-1] |
|
|
|
|
|
|
|
nb_encoder_frames = int(round(audio_len / self.encoder_ds_factor + 1e-4)) |
|
audio_embed_frames = int(np.ceil(nb_encoder_frames / self.stack_factor)) |
|
data["audio_token_len"] = [audio_embed_frames] |
|
|
|
x = self.audio_processor( |
|
audio, |
|
sampling_rate=sampling_rate, |
|
padding="longest", |
|
max_length=audio_len, |
|
**kwargs, |
|
) |
|
if "input_features" in x: |
|
data["audio_values"] = x.input_features |
|
else: |
|
data["audio_values"] = x.input_values |
|
|
|
if text is not None: |
|
assert isinstance( |
|
text, str |
|
), "Text must be a string. Batch mode not supported yet." |
|
if self.audio_placeholder in text: |
|
if "audio_token_len" not in data: |
|
raise ValueError( |
|
f"audio must be provided when using audio placeholder ({self.audio_placeholder}) in text." |
|
) |
|
|
|
start_idx = len( |
|
self.tokenizer.encode( |
|
text[: text.index(self.audio_placeholder)], |
|
add_special_tokens=False, |
|
) |
|
) |
|
data["audio_token_start_idx"] = [start_idx] |
|
text = text.replace( |
|
self.audio_placeholder, |
|
self.audio_token_replacement * audio_embed_frames, |
|
) |
|
|
|
|
|
data.update(self.tokenizer([text], add_special_tokens=False, **kwargs)) |
|
|
|
return transformers.BatchFeature(data=data, tensor_type=return_tensors) |
|
|
|
def batch_decode(self, *args, **kwargs): |
|
return self.tokenizer.batch_decode(*args, **kwargs) |
|
|
|
def decode(self, *args, **kwargs): |
|
return self.tokenizer.decode(*args, **kwargs) |
|
|
|
@property |
|
def model_input_names(self): |
|
tokenizer_input_names = self.tokenizer.model_input_names |
|
audio_processor_input_names = self.audio_processor.model_input_names |
|
return list(set(tokenizer_input_names + audio_processor_input_names)) |
|
|