File size: 5,892 Bytes
ff6b673
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc64ff1
ff6b673
 
0ea32b9
 
 
ff6b673
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3fd6cbf
 
ff6b673
 
 
 
 
 
 
 
 
 
 
406bfaf
ff6b673
 
 
 
 
 
 
 
 
 
 
 
406bfaf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ff6b673
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
---
tags:
- merge
- mergekit
- moe
- frankenmoe
- abacusai/Llama-3-Smaug-8B
- cognitivecomputations/dolphin-2.9-llama3-8b
- Weyaxi/Einstein-v6.1-Llama3-8B
- dreamgen-preview/opus-v1.2-llama-3-8b-base-run3.4-epoch2
base_model:
- abacusai/Llama-3-Smaug-8B
- cognitivecomputations/dolphin-2.9-llama3-8b
- Weyaxi/Einstein-v6.1-Llama3-8B
- dreamgen-preview/opus-v1.2-llama-3-8b-base-run3.4-epoch2
license: apache-2.0
---

![](https://raw.githubusercontent.com/saucam/models/main/skyro.png)

# πŸš€ Skyro-4X8B
Skyro-4X8B is a Mixure of Experts (MoE) made with the following models using [Mergekit](https://github.com/arcee-ai/mergekit):

* [abacusai/Llama-3-Smaug-8B](https://huggingface.co/abacusai/Llama-3-Smaug-8B)
* [cognitivecomputations/dolphin-2.9-llama3-8b](https://huggingface.co/cognitivecomputations/dolphin-2.9-llama3-8b)
* [Weyaxi/Einstein-v6.1-Llama3-8B](https://huggingface.co/Weyaxi/Einstein-v6.1-Llama3-8B)
* [dreamgen-preview/opus-v1.2-llama-3-8b-base-run3.4-epoch2](https://huggingface.co/dreamgen-preview/opus-v1.2-llama-3-8b-base-run3.4-epoch2)

## 🧩 Configuration

```yamlname: "Skyro-4X8B"
base_model: meta-llama/Meta-Llama-3-8B
gate_mode: hidden
experts:
  - source_model: abacusai/Llama-3-Smaug-8B
    positive_prompts:
    - "chat"
    - "assistant"
    - "tell me"
    - "explain"
    - "I want"
  - source_model: cognitivecomputations/dolphin-2.9-llama3-8b
    positive_prompts:
    - "math"
    - "mathematics"
    - "code"
    - "engineering"
    - "solve"
    - "logic"
    - "rationality"
    - "puzzle"
    - "solve"
  - source_model: Weyaxi/Einstein-v6.1-Llama3-8B
    positive_prompts:
    - "science"
    - "medical"
    - "physics"
    - "engineering"
    - "math"
    - "logic"
    - "rationality"
    - "mathematics"
    - "solve"
  - source_model: dreamgen-preview/opus-v1.2-llama-3-8b-base-run3.4-epoch2
    positive_prompts:
    - "story"
    - "roleplay"
    - "role-play"
    - "storywriting"
    - "character"
    - "narrative"
    - "creative"
```

## πŸ’» Usage

```python
!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "saucam/Skyro-4X8B"
messages = [{"role": "user", "content": "In a student council election, candidate A got 20% of the votes while candidate B got 50% more than candidate A's votes. The rest of the votes was given to candidate C. If there were 100 voters, how many votes did candidate C get?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```

## Sample output

```
config.json: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 878/878 [00:00<00:00, 4.18MB/s]
model.safetensors.index.json: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 53.5k/53.5k [00:00<00:00, 101MB/s]
model-00001-of-00006.safetensors: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 9.89G/9.89G [03:47<00:00, 43.4MB/s]
model-00002-of-00006.safetensors: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 9.98G/9.98G [03:23<00:00, 49.0MB/s]
model-00003-of-00006.safetensors: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 9.98G/9.98G [03:44<00:00, 44.5MB/s]
model-00004-of-00006.safetensors: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 9.90G/9.90G [03:30<00:00, 46.9MB/s]
model-00005-of-00006.safetensors: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 9.08G/9.08G [03:08<00:00, 48.1MB/s]
model-00006-of-00006.safetensors: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 1.05G/1.05G [00:20<00:00, 51.3MB/s]
Downloading shards: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [17:58<00:00, 179.78s/it]
Loading checkpoint shards: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [01:27<00:00, 14.59s/it]
WARNING:root:Some parameters are on the meta device device because they were offloaded to the cpu.
Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.

<|im_start|>user
In a student council election, candidate A got 20% of the votes while candidate B got 50% more than candidate A's votes. The rest of the votes was given to candidate C. If there were 100 voters, how many votes did candidate C get?<|im_end|>
<|im_start|>assistant
Let's denote the number of votes candidate A got as \( A \).

Candidate B got 50% more votes than candidate A, so candidate B got \( A + 0.5A = 1.5A \) votes.

Candidate C got the rest of the votes, which means \( C = 100 - (A + 1.5A) \).

We know that candidate A got 20% of the votes, so \( A = 20\% \times 100 = 20 \).

Now we can calculate candidate C's votes:
\( C = 100 - (20 + 1.5 \times 20) \)
\( C = 100 - (20 + 30) \)
\( C = 100 - 50 \)
\( C = 50 \).

Therefore, candidate C got 50 votes.<|im_end|>
```