File size: 5,892 Bytes
ff6b673 dc64ff1 ff6b673 0ea32b9 ff6b673 3fd6cbf ff6b673 406bfaf ff6b673 406bfaf ff6b673 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 |
---
tags:
- merge
- mergekit
- moe
- frankenmoe
- abacusai/Llama-3-Smaug-8B
- cognitivecomputations/dolphin-2.9-llama3-8b
- Weyaxi/Einstein-v6.1-Llama3-8B
- dreamgen-preview/opus-v1.2-llama-3-8b-base-run3.4-epoch2
base_model:
- abacusai/Llama-3-Smaug-8B
- cognitivecomputations/dolphin-2.9-llama3-8b
- Weyaxi/Einstein-v6.1-Llama3-8B
- dreamgen-preview/opus-v1.2-llama-3-8b-base-run3.4-epoch2
license: apache-2.0
---
![](https://raw.githubusercontent.com/saucam/models/main/skyro.png)
# π Skyro-4X8B
Skyro-4X8B is a Mixure of Experts (MoE) made with the following models using [Mergekit](https://github.com/arcee-ai/mergekit):
* [abacusai/Llama-3-Smaug-8B](https://huggingface.co/abacusai/Llama-3-Smaug-8B)
* [cognitivecomputations/dolphin-2.9-llama3-8b](https://huggingface.co/cognitivecomputations/dolphin-2.9-llama3-8b)
* [Weyaxi/Einstein-v6.1-Llama3-8B](https://huggingface.co/Weyaxi/Einstein-v6.1-Llama3-8B)
* [dreamgen-preview/opus-v1.2-llama-3-8b-base-run3.4-epoch2](https://huggingface.co/dreamgen-preview/opus-v1.2-llama-3-8b-base-run3.4-epoch2)
## 𧩠Configuration
```yamlname: "Skyro-4X8B"
base_model: meta-llama/Meta-Llama-3-8B
gate_mode: hidden
experts:
- source_model: abacusai/Llama-3-Smaug-8B
positive_prompts:
- "chat"
- "assistant"
- "tell me"
- "explain"
- "I want"
- source_model: cognitivecomputations/dolphin-2.9-llama3-8b
positive_prompts:
- "math"
- "mathematics"
- "code"
- "engineering"
- "solve"
- "logic"
- "rationality"
- "puzzle"
- "solve"
- source_model: Weyaxi/Einstein-v6.1-Llama3-8B
positive_prompts:
- "science"
- "medical"
- "physics"
- "engineering"
- "math"
- "logic"
- "rationality"
- "mathematics"
- "solve"
- source_model: dreamgen-preview/opus-v1.2-llama-3-8b-base-run3.4-epoch2
positive_prompts:
- "story"
- "roleplay"
- "role-play"
- "storywriting"
- "character"
- "narrative"
- "creative"
```
## π» Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "saucam/Skyro-4X8B"
messages = [{"role": "user", "content": "In a student council election, candidate A got 20% of the votes while candidate B got 50% more than candidate A's votes. The rest of the votes was given to candidate C. If there were 100 voters, how many votes did candidate C get?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```
## Sample output
```
config.json: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 878/878 [00:00<00:00, 4.18MB/s]
model.safetensors.index.json: 100%|ββββββββββββββββββββββββββββββββββββββββββ| 53.5k/53.5k [00:00<00:00, 101MB/s]
model-00001-of-00006.safetensors: 100%|βββββββββββββββββββββββββββββββββββββ| 9.89G/9.89G [03:47<00:00, 43.4MB/s]
model-00002-of-00006.safetensors: 100%|βββββββββββββββββββββββββββββββββββββ| 9.98G/9.98G [03:23<00:00, 49.0MB/s]
model-00003-of-00006.safetensors: 100%|βββββββββββββββββββββββββββββββββββββ| 9.98G/9.98G [03:44<00:00, 44.5MB/s]
model-00004-of-00006.safetensors: 100%|βββββββββββββββββββββββββββββββββββββ| 9.90G/9.90G [03:30<00:00, 46.9MB/s]
model-00005-of-00006.safetensors: 100%|βββββββββββββββββββββββββββββββββββββ| 9.08G/9.08G [03:08<00:00, 48.1MB/s]
model-00006-of-00006.safetensors: 100%|βββββββββββββββββββββββββββββββββββββ| 1.05G/1.05G [00:20<00:00, 51.3MB/s]
Downloading shards: 100%|βββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 6/6 [17:58<00:00, 179.78s/it]
Loading checkpoint shards: 100%|βββββββββββββββββββββββββββββββββββββββββββββββββββ| 6/6 [01:27<00:00, 14.59s/it]
WARNING:root:Some parameters are on the meta device device because they were offloaded to the cpu.
Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
<|im_start|>user
In a student council election, candidate A got 20% of the votes while candidate B got 50% more than candidate A's votes. The rest of the votes was given to candidate C. If there were 100 voters, how many votes did candidate C get?<|im_end|>
<|im_start|>assistant
Let's denote the number of votes candidate A got as \( A \).
Candidate B got 50% more votes than candidate A, so candidate B got \( A + 0.5A = 1.5A \) votes.
Candidate C got the rest of the votes, which means \( C = 100 - (A + 1.5A) \).
We know that candidate A got 20% of the votes, so \( A = 20\% \times 100 = 20 \).
Now we can calculate candidate C's votes:
\( C = 100 - (20 + 1.5 \times 20) \)
\( C = 100 - (20 + 30) \)
\( C = 100 - 50 \)
\( C = 50 \).
Therefore, candidate C got 50 votes.<|im_end|>
``` |