--- language: - spa license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - CIEMPIESS metrics: - wer model-index: - name: Whisper Small Spanish results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: CIEMPIESS type: CIEMPIESS args: 'config: spa, split: test' metrics: - name: Wer type: wer value: 0.38445504655148455 --- # Whisper Small Spanish This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the CIEMPIESS dataset. It achieves the following results on the evaluation set: - Loss: 0.0152 - Wer: 0.3845 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 0.2277 | 0.4484 | 100 | 0.2420 | 9.5187 | | 0.2788 | 0.8969 | 200 | 0.1965 | 7.9300 | | 0.1799 | 1.3453 | 300 | 0.1541 | 6.9804 | | 0.158 | 1.7937 | 400 | 0.1121 | 5.4762 | | 0.0926 | 2.2422 | 500 | 0.0810 | 4.1792 | | 0.0912 | 2.6906 | 600 | 0.0584 | 3.7438 | | 0.0451 | 3.1390 | 700 | 0.0364 | 2.4318 | | 0.0416 | 3.5874 | 800 | 0.0261 | 1.3271 | | 0.0312 | 4.0359 | 900 | 0.0178 | 0.4736 | | 0.015 | 4.4843 | 1000 | 0.0152 | 0.3845 | ### Framework versions - Transformers 4.40.2 - Pytorch 2.2.1+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1