Diffusers
English
File size: 6,269 Bytes
68307ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
"""
Usage:

Regular SVD: 
python svd_low_rank_lora.py --repo_id=glif/how2draw --filename="How2Draw-V2_000002800.safetensors" \
    --new_rank=4 --new_lora_path="How2Draw-V2_000002800_svd.safetensors"

Randomized SVD:
python svd_low_rank_lora.py --repo_id=glif/how2draw --filename="How2Draw-V2_000002800.safetensors" \
    --new_rank=4 --niter=5 --new_lora_path="How2Draw-V2_000002800_svd.safetensors"
"""

import torch
from huggingface_hub import hf_hub_download
import safetensors.torch
import fire


def randomized_svd(matrix, rank, niter=5):
    """
    Performs a randomized SVD on the given matrix.
    Args:
        matrix (torch.Tensor): The input matrix.
        rank (int): The target rank.
        niter (int): Number of iterations for power method.
    Returns:
        U (torch.Tensor), S (torch.Tensor), Vh (torch.Tensor)
    """
    # Step 1: Generate a random Gaussian matrix
    omega = torch.randn(matrix.size(1), rank, device=matrix.device)

    # Step 2: Form Y = A * Omega
    Y = matrix @ omega

    # Step 3: Orthonormalize Y using QR decomposition
    Q, _ = torch.linalg.qr(Y, mode="reduced")

    # Power iteration (optional, improves approximation)
    for _ in range(niter):
        Z = matrix.T @ Q
        Q, _ = torch.linalg.qr(matrix @ Z, mode="reduced")

    # Step 4: Compute B = Q^T * A
    B = Q.T @ matrix

    # Step 5: Compute SVD of the small matrix B
    Ub, S, Vh = torch.linalg.svd(B, full_matrices=False)

    # Step 6: Compute U = Q * Ub
    U = Q @ Ub

    return U[:, :rank], S[:rank], Vh[:rank, :]


def reduce_lora_rank(lora_A, lora_B, niter, new_rank=4):
    """
    Reduces the rank of LoRA matrices lora_A and lora_B with SVD, supporting truncated SVD, too.

    Args:
        lora_A (torch.Tensor): Original lora_A matrix of shape [original_rank, in_features].
        lora_B (torch.Tensor): Original lora_B matrix of shape [out_features, original_rank].
        niter (int): Number of power iterations for randomized SVD.
        new_rank (int): Desired lower rank.

    Returns:
        lora_A_new (torch.Tensor): Reduced lora_A matrix of shape [new_rank, in_features].
        lora_B_new (torch.Tensor): Reduced lora_B matrix of shape [out_features, new_rank].
    """
    # Compute the low-rank update matrix
    dtype = lora_A.dtype
    lora_A = lora_A.to("cuda", torch.float32)
    lora_B = lora_B.to("cuda", torch.float32)
    delta_W = lora_B @ lora_A

    # Perform SVD on the update matrix
    if niter is None:
        U, S, Vh = torch.linalg.svd(delta_W, full_matrices=False)
    # Perform randomized SVD
    if niter:
        U, S, Vh = randomized_svd(delta_W, rank=new_rank, niter=niter)

    # Keep only the top 'new_rank' singular values and vectors
    U_new = U[:, :new_rank]
    S_new = S[:new_rank]
    Vh_new = Vh[:new_rank, :]

    # Compute the square roots of the singular values
    S_sqrt = torch.sqrt(S_new)

    # Compute the new lora_B and lora_A matrices
    lora_B_new = U_new * S_sqrt.unsqueeze(0)  # Shape: [out_features, new_rank]
    lora_A_new = S_sqrt.unsqueeze(1) * Vh_new  # Shape: [new_rank, in_features]

    return lora_A_new.to(dtype), lora_B_new.to(dtype)


def reduce_lora_rank_state_dict(state_dict, niter, new_rank=4):
    """
    Reduces the rank of all LoRA matrices in the given state dict.

    Args:
        state_dict (dict): The state dict containing LoRA matrices.
        niter (int): Number of power iterations for ranodmized SVD.
        new_rank (int): Desired lower rank.

    Returns:
        new_state_dict (dict): State dict with reduced-rank LoRA matrices.
    """
    new_state_dict = state_dict.copy()
    keys = list(state_dict.keys())
    for key in keys:
        if "lora_A.weight" in key:
            # Find the corresponding lora_B
            lora_A_key = key
            lora_B_key = key.replace("lora_A.weight", "lora_B.weight")
            if lora_B_key in state_dict:
                lora_A = state_dict[lora_A_key]
                lora_B = state_dict[lora_B_key]

                # Apply the rank reduction
                lora_A_new, lora_B_new = reduce_lora_rank(lora_A, lora_B, niter=niter, new_rank=new_rank)

                # Update the state dict
                new_state_dict[lora_A_key] = lora_A_new
                new_state_dict[lora_B_key] = lora_B_new

                print(f"Reduced rank of {lora_A_key} and {lora_B_key} to {new_rank}")

    return new_state_dict


def compare_approximation_error(orig_state_dict, new_state_dict):
    for key in orig_state_dict:
        if "lora_A.weight" in key:
            lora_A_key = key
            lora_B_key = key.replace("lora_A.weight", "lora_B.weight")
            lora_A_old = orig_state_dict[lora_A_key]
            lora_B_old = orig_state_dict[lora_B_key]
            lora_A_new = new_state_dict[lora_A_key]
            lora_B_new = new_state_dict[lora_B_key]

            # Original delta_W
            delta_W_old = (lora_B_old @ lora_A_old).to("cuda")

            # Approximated delta_W
            delta_W_new = lora_B_new @ lora_A_new

            # Compute the approximation error
            error = torch.norm(delta_W_old - delta_W_new, p="fro") / torch.norm(delta_W_old, p="fro")
            print(f"Relative error for {lora_A_key}: {error.item():.6f}")


def main(
    repo_id: str,
    filename: str,
    new_rank: int,
    niter: int = None,
    check_error: bool = False,
    new_lora_path: str = None,
):
    # ckpt_path = hf_hub_download(repo_id="glif/how2draw", filename="How2Draw-V2_000002800.safetensors")
    if new_lora_path is None:
        raise ValueError("Please provide a path to serialize the converted state dict.")

    ckpt_path = hf_hub_download(repo_id=repo_id, filename=filename)
    original_state_dict = safetensors.torch.load_file(ckpt_path)
    new_state_dict = reduce_lora_rank_state_dict(original_state_dict, niter=niter, new_rank=new_rank)

    if check_error:
        compare_approximation_error(original_state_dict, new_state_dict)

    new_state_dict = {k: v.to("cpu").contiguous() for k, v in new_state_dict.items()}
    # safetensors.torch.save_file(new_state_dict, "How2Draw-V2_000002800_reduced_sparse.safetensors")
    safetensors.torch.save_file(new_state_dict, new_lora_path)


if __name__ == "__main__":
    fire.Fire(main)