File size: 2,865 Bytes
a9277c4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
---
base_model: THUDM/CogVideoX-5b
library_name: diffusers
license: other
tags:
- text-to-video
- diffusers-training
- diffusers
- lora
- cogvideox
- cogvideox-diffusers
- template:sd-lora
widget: []
---
<!-- This model card has been generated automatically according to the information the training script had access to. You
should probably proofread and complete it, then remove this comment. -->
# CogVideoX LoRA Finetune
<Gallery />
## Model description
This is a lora finetune of the CogVideoX model `THUDM/CogVideoX-5b`.
The model was trained using [CogVideoX Factory](https://github.com/a-r-r-o-w/cogvideox-factory) - a repository containing memory-optimized training scripts for the CogVideoX family of models using [TorchAO](https://github.com/pytorch/ao) and [DeepSpeed](https://github.com/microsoft/DeepSpeed). The scripts were adopted from [CogVideoX Diffusers trainer](https://github.com/huggingface/diffusers/blob/main/examples/cogvideo/train_cogvideox_lora.py).
## Download model
[Download LoRA](sayakpaul/optimizer_adamw_steps_1000_lr-schedule_cosine_with_restarts_learning-rate_1e-4/tree/main) in the Files & Versions tab.
## Usage
Requires the [🧨 Diffusers library](https://github.com/huggingface/diffusers) installed.
```py
import torch
from diffusers import CogVideoXPipeline
from diffusers.utils import export_to_video
pipe = CogVideoXPipeline.from_pretrained("THUDM/CogVideoX-5b", torch_dtype=torch.bfloat16).to("cuda")
pipe.load_lora_weights("sayakpaul/optimizer_adamw_steps_1000_lr-schedule_cosine_with_restarts_learning-rate_1e-4", weight_name="pytorch_lora_weights.safetensors", adapter_name="cogvideox-lora")
# The LoRA adapter weights are determined by what was used for training.
# In this case, we assume `--lora_alpha` is 32 and `--rank` is 64.
# It can be made lower or higher from what was used in training to decrease or amplify the effect
# of the LoRA upto a tolerance, beyond which one might notice no effect at all or overflows.
pipe.set_adapters(["cogvideox-lora"], [32 / 64])
video = pipe("None", guidance_scale=6, use_dynamic_cfg=True).frames[0]
export_to_video(video, "output.mp4", fps=8)
```
For more details, including weighting, merging and fusing LoRAs, check the [documentation](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) on loading LoRAs in diffusers.
## License
Please adhere to the licensing terms as described [here](https://huggingface.co/THUDM/CogVideoX-5b/blob/main/LICENSE) and [here](https://huggingface.co/THUDM/CogVideoX-2b/blob/main/LICENSE).
## Intended uses & limitations
#### How to use
```python
# TODO: add an example code snippet for running this diffusion pipeline
```
#### Limitations and bias
[TODO: provide examples of latent issues and potential remediations]
## Training details
[TODO: describe the data used to train the model] |