File size: 9,335 Bytes
df13e9d
 
 
 
 
0988db9
df13e9d
 
 
 
 
 
 
 
 
0988db9
 
df13e9d
 
 
 
 
 
 
 
 
 
 
 
0988db9
df13e9d
 
 
 
 
 
 
75cb22e
 
0988db9
df13e9d
 
 
 
 
 
 
0988db9
 
 
 
 
 
 
 
df13e9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0988db9
 
 
 
 
 
df13e9d
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
---
tags:
- translation
- generated_from_trainer
datasets:
- cmu_hinglish_dog
metrics:
- bleu
model-index:
- name: t5-small_6_3-hi_en-to-en
  results:
  - task:
      name: Sequence-to-sequence Language Modeling
      type: text2text-generation
    dataset:
      name: cmu_hinglish_dog
      type: cmu_hinglish_dog
      args: hi_en-en
    metrics:
    - name: Bleu
      type: bleu
      value: 18.0863
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# t5-small_6_3-hi_en-to-en

This model was trained from scratch on the cmu_hinglish_dog dataset.
It achieves the following results on the evaluation set:
- Loss: 2.3662
- Bleu: 18.0863
- Gen Len: 15.2708

## Model description

Model generated using:<br />
```python make_student.py t5-small t5_small_6_3 6 3```<br />
Check this [link](https://discuss.huggingface.co/t/questions-on-distilling-from-t5/1193/9) for more information.

## Intended uses & limitations

More information needed

## Training and evaluation data

Used cmu_hinglish_dog dataset. Please check this [link](https://huggingface.co/datasets/cmu_hinglish_dog) for dataset description
 
## Translation:

* Source: hi_en: The text in Hinglish
* Target: en: The text in English



## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Bleu    | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|
| No log        | 1.0   | 126   | 3.0601          | 4.7146  | 11.9904 |
| No log        | 2.0   | 252   | 2.8885          | 5.9584  | 12.3418 |
| No log        | 3.0   | 378   | 2.7914          | 6.649   | 12.3758 |
| 3.4671        | 4.0   | 504   | 2.7347          | 7.3305  | 12.3854 |
| 3.4671        | 5.0   | 630   | 2.6832          | 8.3132  | 12.4268 |
| 3.4671        | 6.0   | 756   | 2.6485          | 8.339   | 12.3641 |
| 3.4671        | 7.0   | 882   | 2.6096          | 8.7269  | 12.414  |
| 3.0208        | 8.0   | 1008  | 2.5814          | 9.2163  | 12.2675 |
| 3.0208        | 9.0   | 1134  | 2.5542          | 9.448   | 12.3875 |
| 3.0208        | 10.0  | 1260  | 2.5339          | 9.9011  | 12.4321 |
| 3.0208        | 11.0  | 1386  | 2.5043          | 9.7529  | 12.5149 |
| 2.834         | 12.0  | 1512  | 2.4848          | 9.9606  | 12.4193 |
| 2.834         | 13.0  | 1638  | 2.4737          | 9.9368  | 12.3673 |
| 2.834         | 14.0  | 1764  | 2.4458          | 10.3182 | 12.4352 |
| 2.834         | 15.0  | 1890  | 2.4332          | 10.486  | 12.4671 |
| 2.7065        | 16.0  | 2016  | 2.4239          | 10.6921 | 12.414  |
| 2.7065        | 17.0  | 2142  | 2.4064          | 10.7426 | 12.4607 |
| 2.7065        | 18.0  | 2268  | 2.3941          | 11.0509 | 12.4087 |
| 2.7065        | 19.0  | 2394  | 2.3826          | 11.2407 | 12.3386 |
| 2.603         | 20.0  | 2520  | 2.3658          | 11.3711 | 12.3992 |
| 2.603         | 21.0  | 2646  | 2.3537          | 11.42   | 12.5032 |
| 2.603         | 22.0  | 2772  | 2.3475          | 12.0665 | 12.5074 |
| 2.603         | 23.0  | 2898  | 2.3398          | 12.0343 | 12.4342 |
| 2.5192        | 24.0  | 3024  | 2.3298          | 12.1011 | 12.5096 |
| 2.5192        | 25.0  | 3150  | 2.3216          | 12.2562 | 12.4809 |
| 2.5192        | 26.0  | 3276  | 2.3131          | 12.4585 | 12.4427 |
| 2.5192        | 27.0  | 3402  | 2.3052          | 12.7094 | 12.534  |
| 2.4445        | 28.0  | 3528  | 2.2984          | 12.7432 | 12.5053 |
| 2.4445        | 29.0  | 3654  | 2.2920          | 12.8409 | 12.4501 |
| 2.4445        | 30.0  | 3780  | 2.2869          | 12.6365 | 12.4936 |
| 2.4445        | 31.0  | 3906  | 2.2777          | 12.8523 | 12.5234 |
| 2.3844        | 32.0  | 4032  | 2.2788          | 12.9216 | 12.4204 |
| 2.3844        | 33.0  | 4158  | 2.2710          | 12.9568 | 12.5064 |
| 2.3844        | 34.0  | 4284  | 2.2643          | 12.9641 | 12.4299 |
| 2.3844        | 35.0  | 4410  | 2.2621          | 12.9787 | 12.448  |
| 2.3282        | 36.0  | 4536  | 2.2554          | 13.1264 | 12.4374 |
| 2.3282        | 37.0  | 4662  | 2.2481          | 13.1853 | 12.4416 |
| 2.3282        | 38.0  | 4788  | 2.2477          | 13.3259 | 12.4119 |
| 2.3282        | 39.0  | 4914  | 2.2448          | 13.2017 | 12.4278 |
| 2.2842        | 40.0  | 5040  | 2.2402          | 13.3772 | 12.4437 |
| 2.2842        | 41.0  | 5166  | 2.2373          | 13.2184 | 12.414  |
| 2.2842        | 42.0  | 5292  | 2.2357          | 13.5267 | 12.4342 |
| 2.2842        | 43.0  | 5418  | 2.2310          | 13.5754 | 12.4087 |
| 2.2388        | 44.0  | 5544  | 2.2244          | 13.653  | 12.4427 |
| 2.2388        | 45.0  | 5670  | 2.2243          | 13.6028 | 12.431  |
| 2.2388        | 46.0  | 5796  | 2.2216          | 13.7128 | 12.4151 |
| 2.2388        | 47.0  | 5922  | 2.2231          | 13.749  | 12.4172 |
| 2.2067        | 48.0  | 6048  | 2.2196          | 13.7256 | 12.4034 |
| 2.2067        | 49.0  | 6174  | 2.2125          | 13.8237 | 12.396  |
| 2.2067        | 50.0  | 6300  | 2.2131          | 13.6642 | 12.4416 |
| 2.2067        | 51.0  | 6426  | 2.2115          | 13.8876 | 12.4119 |
| 2.1688        | 52.0  | 6552  | 2.2091          | 14.0323 | 12.4639 |
| 2.1688        | 53.0  | 6678  | 2.2082          | 13.916  | 12.3843 |
| 2.1688        | 54.0  | 6804  | 2.2071          | 13.924  | 12.3758 |
| 2.1688        | 55.0  | 6930  | 2.2046          | 13.9563 | 12.4416 |
| 2.1401        | 56.0  | 7056  | 2.2020          | 14.0592 | 12.483  |
| 2.1401        | 57.0  | 7182  | 2.2047          | 13.8879 | 12.4076 |
| 2.1401        | 58.0  | 7308  | 2.2018          | 13.9267 | 12.3949 |
| 2.1401        | 59.0  | 7434  | 2.1964          | 14.0518 | 12.4363 |
| 2.1092        | 60.0  | 7560  | 2.1926          | 14.1518 | 12.4883 |
| 2.1092        | 61.0  | 7686  | 2.1972          | 14.132  | 12.4034 |
| 2.1092        | 62.0  | 7812  | 2.1939          | 14.2066 | 12.4151 |
| 2.1092        | 63.0  | 7938  | 2.1905          | 14.2923 | 12.4459 |
| 2.0932        | 64.0  | 8064  | 2.1932          | 14.2476 | 12.3418 |
| 2.0932        | 65.0  | 8190  | 2.1925          | 14.2057 | 12.3907 |
| 2.0932        | 66.0  | 8316  | 2.1906          | 14.2978 | 12.4055 |
| 2.0932        | 67.0  | 8442  | 2.1903          | 14.3276 | 12.4427 |
| 2.0706        | 68.0  | 8568  | 2.1918          | 14.4681 | 12.4034 |
| 2.0706        | 69.0  | 8694  | 2.1882          | 14.3751 | 12.4225 |
| 2.0706        | 70.0  | 8820  | 2.1870          | 14.5904 | 12.4204 |
| 2.0706        | 71.0  | 8946  | 2.1865          | 14.6409 | 12.4512 |
| 2.0517        | 72.0  | 9072  | 2.1831          | 14.6505 | 12.4352 |
| 2.0517        | 73.0  | 9198  | 2.1835          | 14.7485 | 12.4363 |
| 2.0517        | 74.0  | 9324  | 2.1824          | 14.7344 | 12.4586 |
| 2.0517        | 75.0  | 9450  | 2.1829          | 14.8097 | 12.4575 |
| 2.0388        | 76.0  | 9576  | 2.1822          | 14.6681 | 12.4108 |
| 2.0388        | 77.0  | 9702  | 2.1823          | 14.6421 | 12.4342 |
| 2.0388        | 78.0  | 9828  | 2.1816          | 14.7014 | 12.4459 |
| 2.0388        | 79.0  | 9954  | 2.1810          | 14.744  | 12.4565 |
| 2.0224        | 80.0  | 10080 | 2.1839          | 14.7889 | 12.4437 |
| 2.0224        | 81.0  | 10206 | 2.1793          | 14.802  | 12.4565 |
| 2.0224        | 82.0  | 10332 | 2.1776          | 14.7702 | 12.4214 |
| 2.0224        | 83.0  | 10458 | 2.1809          | 14.6772 | 12.4236 |
| 2.0115        | 84.0  | 10584 | 2.1786          | 14.709  | 12.4214 |
| 2.0115        | 85.0  | 10710 | 2.1805          | 14.7693 | 12.3981 |
| 2.0115        | 86.0  | 10836 | 2.1790          | 14.7628 | 12.4172 |
| 2.0115        | 87.0  | 10962 | 2.1785          | 14.7538 | 12.3992 |
| 2.0007        | 88.0  | 11088 | 2.1788          | 14.7493 | 12.3726 |
| 2.0007        | 89.0  | 11214 | 2.1788          | 14.8793 | 12.4045 |
| 2.0007        | 90.0  | 11340 | 2.1786          | 14.8318 | 12.3747 |
| 2.0007        | 91.0  | 11466 | 2.1769          | 14.8061 | 12.4013 |
| 1.9967        | 92.0  | 11592 | 2.1757          | 14.8108 | 12.3843 |
| 1.9967        | 93.0  | 11718 | 2.1747          | 14.8036 | 12.379  |
| 1.9967        | 94.0  | 11844 | 2.1764          | 14.7447 | 12.3737 |
| 1.9967        | 95.0  | 11970 | 2.1759          | 14.7759 | 12.3875 |
| 1.9924        | 96.0  | 12096 | 2.1760          | 14.7695 | 12.3875 |
| 1.9924        | 97.0  | 12222 | 2.1762          | 14.8022 | 12.3769 |
| 1.9924        | 98.0  | 12348 | 2.1763          | 14.7519 | 12.3822 |
| 1.9924        | 99.0  | 12474 | 2.1760          | 14.7756 | 12.3832 |
| 1.9903        | 100.0 | 12600 | 2.1761          | 14.7713 | 12.3822 |

### Evaluation results

| Data Split |   Bleu  |
|:----------:|:-------:|
| Validation | 17.8061 |
|    Test    | 18.0863 |

### Framework versions

- Transformers 4.20.0.dev0
- Pytorch 1.8.0
- Datasets 2.1.0
- Tokenizers 0.12.1