Initial commit
Browse files- .gitattributes +2 -0
- README.md +59 -0
- a2c-Acrobot-v1.zip +3 -0
- a2c-Acrobot-v1/_stable_baselines3_version +1 -0
- a2c-Acrobot-v1/data +96 -0
- a2c-Acrobot-v1/policy.optimizer.pth +3 -0
- a2c-Acrobot-v1/policy.pth +3 -0
- a2c-Acrobot-v1/pytorch_variables.pth +3 -0
- a2c-Acrobot-v1/system_info.txt +7 -0
- args.yml +59 -0
- config.yml +11 -0
- env_kwargs.yml +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- train_eval_metrics.zip +3 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -25,3 +25,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
29 |
+
vec_normalize.pkl filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- Acrobot-v1
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: -79.80 +/- 5.44
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: Acrobot-v1
|
20 |
+
type: Acrobot-v1
|
21 |
+
---
|
22 |
+
|
23 |
+
# **A2C** Agent playing **Acrobot-v1**
|
24 |
+
This is a trained model of a **A2C** agent playing **Acrobot-v1**
|
25 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
|
26 |
+
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
|
27 |
+
|
28 |
+
The RL Zoo is a training framework for Stable Baselines3
|
29 |
+
reinforcement learning agents,
|
30 |
+
with hyperparameter optimization and pre-trained agents included.
|
31 |
+
|
32 |
+
## Usage (with SB3 RL Zoo)
|
33 |
+
|
34 |
+
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
|
35 |
+
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
|
36 |
+
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
|
37 |
+
|
38 |
+
```
|
39 |
+
# Download model and save it into the logs/ folder
|
40 |
+
python -m utils.load_from_hub --algo a2c --env Acrobot-v1 -orga sb3 -f logs/
|
41 |
+
python enjoy.py --algo a2c --env Acrobot-v1 -f logs/
|
42 |
+
```
|
43 |
+
|
44 |
+
## Training (with the RL Zoo)
|
45 |
+
```
|
46 |
+
python train.py --algo a2c --env Acrobot-v1 -f logs/
|
47 |
+
# Upload the model and generate video (when possible)
|
48 |
+
python -m utils.push_to_hub --algo a2c --env Acrobot-v1 -f logs/ -orga sb3
|
49 |
+
```
|
50 |
+
|
51 |
+
## Hyperparameters
|
52 |
+
```python
|
53 |
+
OrderedDict([('ent_coef', 0.0),
|
54 |
+
('n_envs', 16),
|
55 |
+
('n_timesteps', 500000.0),
|
56 |
+
('normalize', True),
|
57 |
+
('policy', 'MlpPolicy'),
|
58 |
+
('normalize_kwargs', {'norm_obs': True, 'norm_reward': False})])
|
59 |
+
```
|
a2c-Acrobot-v1.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:76c983f2f42c846ea1dd1ce4b7df4f0f2f7f1846c1a662847f50e5ed296972e8
|
3 |
+
size 100694
|
a2c-Acrobot-v1/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.1a8
|
a2c-Acrobot-v1/data
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f5e104e1950>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5e104e19e0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5e104e1a70>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5e104e1b00>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f5e104e1b90>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f5e104e1c20>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5e104e1cb0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f5e104e1d40>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5e104e1dd0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5e104e1e60>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5e104e1ef0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f5e10533840>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {
|
23 |
+
":type:": "<class 'dict'>",
|
24 |
+
":serialized:": "gASVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
25 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
26 |
+
"optimizer_kwargs": {
|
27 |
+
"alpha": 0.99,
|
28 |
+
"eps": 1e-05,
|
29 |
+
"weight_decay": 0
|
30 |
+
}
|
31 |
+
},
|
32 |
+
"observation_space": {
|
33 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
34 |
+
":serialized:": "gASVrwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMA2xvd5SMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlGgGjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwaFlGgKiUMYAACAvwAAgL8AAIC/AACAv9sPScHWMeLBlHSUYowEaGlnaJRoEGgSSwCFlGgUh5RSlChLAUsGhZRoColDGAAAgD8AAIA/AACAPwAAgD/bD0lB1jHiQZR0lGKMDWJvdW5kZWRfYmVsb3eUaBBoEksAhZRoFIeUUpQoSwFLBoWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQwYBAQEBAQGUdJRijA1ib3VuZGVkX2Fib3ZllGgQaBJLAIWUaBSHlFKUKEsBSwaFlGgoiUMGAQEBAQEBlHSUYowKX25wX3JhbmRvbZROjAZfc2hhcGWUSwaFlHViLg==",
|
35 |
+
"dtype": "float32",
|
36 |
+
"low": "[ -1. -1. -1. -1. -12.566371 -28.274334]",
|
37 |
+
"high": "[ 1. 1. 1. 1. 12.566371 28.274334]",
|
38 |
+
"bounded_below": "[ True True True True True True]",
|
39 |
+
"bounded_above": "[ True True True True True True]",
|
40 |
+
"_np_random": null,
|
41 |
+
"_shape": [
|
42 |
+
6
|
43 |
+
]
|
44 |
+
},
|
45 |
+
"action_space": {
|
46 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
47 |
+
":serialized:": "gASVTQsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLA4wFZHR5cGWUjAVudW1weZSMBWR0eXBllJOUjAJpOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRijApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBJfX3JhbmRvbXN0YXRlX2N0b3KUk5SMB01UMTk5MzeUhZRSlH2UKIwNYml0X2dlbmVyYXRvcpRoE4wFc3RhdGWUfZQojANrZXmUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoB4wHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAU1wAoWUaAmMAnU0lImIh5RSlChLA2gNTk5OSv////9K/////0sAdJRiiULACQAAAAAAgFPCs5yHA7WTcuyrW+jmsvLPtoHa1QbvYaExTaBrtczZE+YYn3SceS/IpRuAxHkBSZ4PQ+Rd4BiTkhNVzNRKKWTSCJW+NNCeRHJ6A/Ctvwpzm3s+6WCxBtp1A0ULbn3WFmrrBDRmg7fz9aUvae9CY0O1XPfCd1LMRkQ3LQiJbtCOrnf7GLaAT3ue+U8y7BLYuY5ehakZyq49di1nK0KAnsXuxx/1IgFdS88kD8wZUmREV5hwnQr1Ehe16VreO8T/Qc86sV+2h90z2FiJqqLNf3s/yZS3bA9DHzGZfRtgkKu3Bx0ZTN7I+466APXPqRreJf4gBqUW/NB248FO9cpD0wFaed9QV63NqpiFOs/RYeEwD8e32dZFRfi9SK5aLvuApJMu2LOfZweypHIkyPjeY5W+tsm2bdPmVoCAOiyi73cf5k0LQeJNWqZU/wuy/f8myghZ9qrjf+2JSJMaB9VNMXWmxuq4Dq0fkhzJr1ML7SgftfSG29O5koFUMozQL58gAzyX96ZMcpWbZ+3/zlaVhGln5egXC8MtIK6xIFCvh/vD/F1jLgYIp14MM597MuPmTpa+OaKek7bql9Cp8/0skhg5QSCvCaijm8wenxrfqLyRxDPCpS+L3isJC5LrjFgWnsdxQXVrJK8uaobJcTIJ5NrYYfA2l5gH27iPI9EqhzFtZJXiE4vXpH18f3kouYV9RowPzOtmYsbmstR/Mx/VY7E0XBmnMidL4dYTUXgxaDbFxWy3y6miL2yw0I2O09vPWV7LqbwMbthlU26lrLfnJDz88B+7y4pFCwvsHgCsMWq6pvroAF4Ms+++JnhzrL0GLrtfJ7667p42Vg78GirmKIRMFH0p6aLRPV4V/fclE3PLBj0InU315M5v7fDFj/IreJeFUhIAy5/BlvLdgwIfBMBWvyjhqGRBo2KmdiDAO9BPhdi6oGmZUCxTDjUyMd8rjeRdntTE+L9sHQUSvUfpRjKcSIjZXcjsMMSwwU0QzIXewD4nZg8EAZ72iHnChWveW7cB5EQRFE+YPvvyNAw4OvORF+DjDtmLUz6jNz0JbkuKbhIQEEVbpDRkoeIGA4HATymZeE4TX/hvhOxJfX5liXD9/Uon8OjJ/hhIrDNUYR2NOV2R1L+VuK/JA9o0izGPiCC9vi7UK1u4re8tvPrBInC6BH2DpMvWSRepdH0frFxGsH/kRB/S77USeMs38a+yorDaa9Wsb9WnuQg10vl087jhvwSZx77fGq52NV1h/UnZAjnqJOjCPBgQrY0wsSeSW6SOSdItAOupiWkVvSzHz+gopd/3FUUPbjdik7Vd6O6ycGOFwp4+wyZqq1MKHww5exJND6De8NB4fGBzsvKoT8O1fAC3Y2Z+3mLYwkCJXULx2zNSO90bQi0L0BhTF1AidNtqRkak72V+V1kos6m4F+kyZiOiwxfcHKWHmpQe3A8HpX6nacx0Zso0WyF/W/sOLo//2g0YD9koIjgKvw//f9Em4CvxNBUMnJYTVQJGysF4QMShnM6byaMNJhRVALf+X0+SgLJkEwLfKdBbKxjA035OEc2YKmUpvooVUUt+9U8d7cKRgNYKKPwCHyYfLJSQt4ZEdThgjeywDxgsGzPax5SklOLroSYn39feofatZDzJXevfPTHyi1ZLwpe6Hwkbqz1FuOnHiShPedbEA9b/HCtBytSZrgUwlwHpQlAiBTSxpN7TFzVZrrhRd6N8W+FeE9SAGCHwXchFR4SCGThPyRGO/XWkMPJ42BLUOmMGepDQgWH646tjoJSE3EXcA5iDS+Nq6Oh521oC2UPAnvxIj1QbVh8IbxlBytRTTjc0c14E9cyhIPlgIoHriuEFSMXSEzOGL1MmL6UCbiXfsRg9Z6OwWCCl3VeGg5bEZ1kjJkvs08k7wtPk4ATAjaTL3QoY2gf106zFbJtL4D5gmLMJ9OuzE2Fn5uaAqqpjXIqqEXxS9jtpsRU9VTHCg68RwXQVIUhuVJgHq8fOigBMrW7Am5+jjo/GNNlcFcp813dFiXy4qHhjGSEjNXp3ln03NZkOgqXQ8SalJlPOvyrAS9wW9EtjQKhcrBSWSsQ8C3o/Mc/sR/CMRB85ZIojR/tiCKtOutxQMIusIOnYHK8g6kPpTQ8J/PfJ8pa3GEoYoA67axQTXsysd2Y6ZDwpz1HkAeISVK2AlCcuQssrQv8dVLAcins/2kjRFp5Vp82HSX9j6Ci9GH5mkdyqV84vWsdwRz4JNXHZoHVZKnrxSdA1HUwRUI/5oWiqnGk9KyiS4Mv9dQIVluJ1+/pAHYEdG9YgLHiNE2zA7aIQbqqlGX6jH1CrHSPL9mnlHdPiKjozwRXu02UQuzlGJn+/PUkU6cPYLLeLc8e7S2qfCZxbdpHioand7wYKqb5bMb8dA3Dwvm6P6iJXSogJ+Q+0z43li8ydYJqZNZlSjsljr/2c5UU33vMhLDLEXIHT8WzrsS45TsKNbhYfTYx6Ds/8W5yOtiOPWc0+fRlAjbQC++FKo5UaMl2eRCxI4U5/heX2HxJGNk50rICjuFsG/8Q+NUuJgS+y3FMhe+sm1e2MdC+ldkBqEn8oRxajECbP4Wizz1tfJliW/1A5fdGTfUxM3HV72bJgnqswmoAumAx6d36KfuZwEEp0/wcrdo+8/unJ5f2mYeqCrOcaxDJrs6SxW1zVaH/YTZl+RNA0NjPLgaqnlveaes/MkpzsVEQDtvKGFrG1cnmGjZVi2azrSDGQ0Y423nEksDC5awYcOJmVYbeA4DkMSNfj+7Dx2SzH/PVPuXLX9aw9K9QF4Ml48zsSrwsVjIa8+gIdffs2pf2wCKcPtFez6vOT0UDuFHknJjMDg0fI3DnyC7jJqO8V4XpmPyarTp3JJRGhmqTHhpZInn70JMfS+RFry5+rLSOM0T+KWV8fYjs9eyCiZijlR4AiADooXm9G8JIzZCLZX2Dty83iyz7gQzSxYO7ULuTT1stvGuJwbBP4LMhLXkbxdhAmBSDiYNOnc3O+yFsO6Ps9UOQD8S4Pbr8hZ4mFjbicpO635SwpmHINYDeuewln3/GHz69LpCjmpnKPeF9ZxXcq6MR4kJUV2j/dQzqjLniNaQmrMkULdI7W1sMXRFcsz9xs1GVwVqmtMVws8HtvXMYNmosCrrgAFX2ghPz7dXCV6vML5YhfNbDAzzG6MHffrslrhMav3vtlt8Fnld4VaH6IhMkowayT1lSVvfvlKHCWwtKaTcOZrR5LZGalJOpFbVIFUOAo+LnY/25bmc3KloyLzgiTudjPsXEGPNPBIvE/5cMEvU4Lrs0N3tCke4abYDXF9f14QrwLlHSUYowDcG9zlE1wAnWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWKMBl9zaGFwZZQpdWIu",
|
48 |
+
"n": 3,
|
49 |
+
"dtype": "int64",
|
50 |
+
"_np_random": "RandomState(MT19937)",
|
51 |
+
"_shape": []
|
52 |
+
},
|
53 |
+
"n_envs": 16,
|
54 |
+
"num_timesteps": 500000,
|
55 |
+
"_total_timesteps": 500000,
|
56 |
+
"_num_timesteps_at_start": 0,
|
57 |
+
"seed": 0,
|
58 |
+
"action_noise": null,
|
59 |
+
"start_time": 1614619329.0815487,
|
60 |
+
"learning_rate": 0.0007,
|
61 |
+
"tensorboard_log": null,
|
62 |
+
"lr_schedule": {
|
63 |
+
":type:": "<class 'function'>",
|
64 |
+
":serialized:": "gASVywIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxOL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvcmwvc3RhYmxlLWJhc2VsaW5lczMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxOL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvcmwvc3RhYmxlLWJhc2VsaW5lczMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
65 |
+
},
|
66 |
+
"_last_obs": null,
|
67 |
+
"_last_episode_starts": null,
|
68 |
+
"_last_original_obs": {
|
69 |
+
":type:": "<class 'numpy.ndarray'>",
|
70 |
+
":serialized:": "gASVDQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLBoaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUKAAQAAEA9/P7tzr70X/X8/MWgavFDSvjvoUDK8vOt/P3i1y7xMzX4/f+fFPSErDDxQdqQ9gcJ+Pw5ZyT2a538/p4TfvPfeUr3ehBS9JMd+Pzbgx73U2X8/ysYLvdBL/by83MI9Y6B/PwMtXb0p938/aoqGPI+SiD3vnoG9WfZ/P12bjDzYsn8/GrJGvR5WR72Osg67hv5/PwwC3LtuwH8/sl00vdlpoj1tpqK8mrl/P6LMPb2nsH8/7H5JvY0uqLxQVBI9+St/P3abpL1r/H8/K1IrvJdLib1ghK89osR/P6hOLr3f/X8/rxsEvDGvvb0shkG9x9x+PybbwL2ISH8/ZSOZPYlWmL13qHg8lth+P4g8wr2+kH8/S5JuPb4SWz3CHa69hOJ+P33zvj155X4/Jfa9vdQKc70uH2G96Gd/P3Byi716YX8/GFyOvXczTT3iaFQ9Adh+P3Ntwr1PFX8/0iqtvRVihj1PTU49ed5/Pw4BAz20w34/1PfIvbb8mD24/oi8lHSUYi4="
|
71 |
+
},
|
72 |
+
"_episode_num": 0,
|
73 |
+
"use_sde": false,
|
74 |
+
"sde_sample_freq": -1,
|
75 |
+
"_current_progress_remaining": 0.0,
|
76 |
+
"ep_info_buffer": {
|
77 |
+
":type:": "<class 'collections.deque'>",
|
78 |
+
":serialized:": "gASV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwFFAAAAAAACMAWyUS0aMAXSUR0BxI836yjYadX2UKGgGR8BWwAAAAAAAaAdLXGgIR0BxI+AiFCb+dX2UKGgGR8BWAAAAAAAAaAdLWWgIR0BxJI0XP7emdX2UKGgGR8BTgAAAAAAAaAdLT2gIR0BxJcfms/6gdX2UKGgGR8BkgAAAAAAAaAdLpWgIR0BxJZqgyuZDdX2UKGgGR8BTwAAAAAAAaAdLUGgIR0BxJTzf779AdX2UKGgGR8BRQAAAAAAAaAdLRmgIR0BxJsfq5byIdX2UKGgGR8BTwAAAAAAAaAdLUGgIR0BxJ2GoJiRXdX2UKGgGR8BRQAAAAAAAaAdLRmgIR0BxJ8RtgrpadX2UKGgGR8BZAAAAAAAAaAdLZWgIR0BxJxZvDP4VdX2UKGgGR8BSAAAAAAAAaAdLSWgIR0BxKGIInjQzdX2UKGgGR8BVgAAAAAAAaAdLV2gIR0BxKSHmA9V4dX2UKGgGR8BTQAAAAAAAaAdLTmgIR0BxKYFOfukUdX2UKGgGR8BUAAAAAAAAaAdLUWgIR0BxKQ1tO2y+dX2UKGgGR8BTQAAAAAAAaAdLTmgIR0BxLRnK4hECdX2UKGgGR8BSgAAAAAAAaAdLS2gIR0BxLRyimEXddX2UKGgGR8BVgAAAAAAAaAdLV2gIR0BxLpQGfPHDdX2UKGgGR8BVQAAAAAAAaAdLVmgIR0BxLzg9/z8QdX2UKGgGR8BZAAAAAAAAaAdLZWgIR0BxL4oRZlnRdX2UKGgGR8BUgAAAAAAAaAdLU2gIR0BxL9wzch1UdX2UKGgGR8BVQAAAAAAAaAdLVmgIR0BxL8qTbFjvdX2UKGgGR8BUQAAAAAAAaAdLUmgIR0BxMNP69CeFdX2UKGgGR8BTwAAAAAAAaAdLUGgIR0BxMTt8eCCjdX2UKGgGR8BXwAAAAAAAaAdLYGgIR0BxMZFc6eXidX2UKGgGR8BUAAAAAAAAaAdLUWgIR0BxMbikwevIdX2UKGgGR8BQAAAAAAAAaAdLQWgIR0BxMYYKpkwwdX2UKGgGR8BWQAAAAAAAaAdLWmgIR0BxMioqCpWFdX2UKGgGR8BVAAAAAAAAaAdLVWgIR0BxMtpnHvMKdX2UKGgGR8BWQAAAAAAAaAdLWmgIR0BxNDUz9CNTdX2UKGgGR8BYAAAAAAAAaAdLYWgIR0BxNQv+OwPidX2UKGgGR8BTgAAAAAAAaAdLT2gIR0BxNszsQd0adX2UKGgGR8BVwAAAAAAAaAdLWGgIR0BxN86uGKyfdX2UKGgGR8BTQAAAAAAAaAdLTmgIR0BxOA+FDfFadX2UKGgGR8BRQAAAAAAAaAdLRmgIR0BxOB07r9l3dX2UKGgGR8BSAAAAAAAAaAdLSWgIR0BxOLugHu7ZdX2UKGgGR8BUQAAAAAAAaAdLUmgIR0BxOTjo6jnFdX2UKGgGR8BRQAAAAAAAaAdLRmgIR0BxOkpPRArydX2UKGgGR8BTwAAAAAAAaAdLUGgIR0BxOZfUnXumdX2UKGgGR8BTQAAAAAAAaAdLTmgIR0BxOm/9Hc1wdX2UKGgGR8BTwAAAAAAAaAdLUGgIR0BxO16gM+eOdX2UKGgGR8BUwAAAAAAAaAdLVGgIR0BxO9RaX8fndX2UKGgGR8BVAAAAAAAAaAdLVWgIR0BxPJFMIu5CdX2UKGgGR8BawAAAAAAAaAdLbGgIR0BxPn90ihWYdX2UKGgGR8BTwAAAAAAAaAdLUGgIR0BxPf/VAiV0dX2UKGgGR8BTwAAAAAAAaAdLUGgIR0BxPtbiZOSGdX2UKGgGR8BPAAAAAAAAaAdLP2gIR0BxQHwiJO32dX2UKGgGR8BTgAAAAAAAaAdLT2gIR0BxQGMju8brdX2UKGgGR8BTgAAAAAAAaAdLT2gIR0BxQYI3R5TqdX2UKGgGR8BeQAAAAAAAaAdLemgIR0BxQby+Yc//dX2UKGgGR8BUwAAAAAAAaAdLVGgIR0BxQm2x6fJ4dX2UKGgGR8BRgAAAAAAAaAdLR2gIR0BxQkQUYbbUdX2UKGgGR8BTgAAAAAAAaAdLT2gIR0BxQ/zK9wm3dX2UKGgGR8BUQAAAAAAAaAdLUmgIR0BxRG3iJfpmdX2UKGgGR8BTQAAAAAAAaAdLTmgIR0BxRPlU6xPgdX2UKGgGR8BZwAAAAAAAaAdLaGgIR0BxRNeiSJTEdX2UKGgGR8BVQAAAAAAAaAdLVmgIR0BxRliTdLxqdX2UKGgGR8BTwAAAAAAAaAdLUGgIR0BxRmEHt4RmdX2UKGgGR8BTQAAAAAAAaAdLTmgIR0BxR5xkupS8dX2UKGgGR8BVwAAAAAAAaAdLWGgIR0BxSVZdOZb7dX2UKGgGR8BRQAAAAAAAaAdLRmgIR0BxSPrLQokSdX2UKGgGR8BVQAAAAAAAaAdLVmgIR0BxSV40Mw10dX2UKGgGR8BTQAAAAAAAaAdLTmgIR0BxSf8tPHktdX2UKGgGR8BRAAAAAAAAaAdLRWgIR0BxSsBS1maqdX2UKGgGR8BTgAAAAAAAaAdLT2gIR0BxS3VlPJq7dX2UKGgGR8BVQAAAAAAAaAdLVmgIR0BxTAtQKrq/dX2UKGgGR8BRgAAAAAAAaAdLR2gIR0BxTR7AtWdVdX2UKGgGR8BVwAAAAAAAaAdLWGgIR0BxTUcZLqUvdX2UKGgGR8BUQAAAAAAAaAdLUmgIR0BxTvz06HTJdX2UKGgGR8BUAAAAAAAAaAdLUWgIR0BxTsH5aePJdX2UKGgGR8BWwAAAAAAAaAdLXGgIR0BxTz7k4m1IdX2UKGgGR8BSQAAAAAAAaAdLSmgIR0BxT3VSXMQmdX2UKGgGR8BRQAAAAAAAaAdLRmgIR0BxTvqmj0tidX2UKGgGR8BPgAAAAAAAaAdLQGgIR0BxUT6nBLwndX2UKGgGR8BUQAAAAAAAaAdLUmgIR0BxUaInBtUGdX2UKGgGR8BRQAAAAAAAaAdLRmgIR0BxUZPHktEodX2UKGgGR8BpQAAAAAAAaAdLy2gIR0BxUisOoYNzdX2UKGgGR8BVQAAAAAAAaAdLVmgIR0BxVKC6H0sfdX2UKGgGR8BTwAAAAAAAaAdLUGgIR0BxVI9W6shgdX2UKGgGR8BTQAAAAAAAaAdLTmgIR0BxVPQyAQQMdX2UKGgGR8BRwAAAAAAAaAdLSGgIR0BxVgR5C4SZdX2UKGgGR8BRgAAAAAAAaAdLR2gIR0BxVfWqcVgydX2UKGgGR8BTgAAAAAAAaAdLT2gIR0BxWG/8EV32dX2UKGgGR8BgAAAAAAAAaAdLgWgIR0BxWQ2bXpW4dX2UKGgGR8BUgAAAAAAAaAdLU2gIR0BxWTBYV6/qdX2UKGgGR8BTQAAAAAAAaAdLTmgIR0BxWI+6iCardX2UKGgGR8BdQAAAAAAAaAdLdmgIR0BxWoq8UVSGdX2UKGgGR8BWAAAAAAAAaAdLWWgIR0BxWl6Ww/xEdX2UKGgGR8BSAAAAAAAAaAdLSWgIR0BxWpzeXRgJdX2UKGgGR8BRwAAAAAAAaAdLSGgIR0BxWu7K7qY7dX2UKGgGR8BZAAAAAAAAaAdLZWgIR0BxW7Qla8pTdX2UKGgGR8BTwAAAAAAAaAdLUGgIR0BxWw1baAWjdX2UKGgGR8BTgAAAAAAAaAdLT2gIR0BxW0fCAMDwdX2UKGgGR8BSAAAAAAAAaAdLSWgIR0BxXY1hsqJ/dX2UKGgGR8BTwAAAAAAAaAdLUGgIR0BxXm+SKWLQdX2UKGgGR8BTAAAAAAAAaAdLTWgIR0BxXnYwqRU4dX2UKGgGR8BRgAAAAAAAaAdLR2gIR0BxYdwyZa3adX2UKGgGR8BRQAAAAAAAaAdLRmgIR0BxYSeHzpX7dX2UKGgGR8BZAAAAAAAAaAdLZWgIR0BxYmC2+fyxdX2UKGgGR8BRQAAAAAAAaAdLRmgIR0BxYvci4axYdX2UKGgGR8BUgAAAAAAAaAdLU2gIR0BxY1Gy5Zr6dWUu"
|
79 |
+
},
|
80 |
+
"ep_success_buffer": {
|
81 |
+
":type:": "<class 'collections.deque'>",
|
82 |
+
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
83 |
+
},
|
84 |
+
"_n_updates": 6250,
|
85 |
+
"n_steps": 5,
|
86 |
+
"gamma": 0.99,
|
87 |
+
"gae_lambda": 1.0,
|
88 |
+
"ent_coef": 0.0,
|
89 |
+
"vf_coef": 0.5,
|
90 |
+
"max_grad_norm": 0.5,
|
91 |
+
"normalize_advantage": false,
|
92 |
+
"_last_dones": {
|
93 |
+
":type:": "<class 'numpy.ndarray'>",
|
94 |
+
":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="
|
95 |
+
}
|
96 |
+
}
|
a2c-Acrobot-v1/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6a67e8238ceb6abb14daacea641fe656472d0d59e559c61138114136992aeddf
|
3 |
+
size 41281
|
a2c-Acrobot-v1/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:83b6ba19c28f34e7853b614e65ca7f8a91acdc4c178c7bfa442cbf0ab4ee6540
|
3 |
+
size 41921
|
a2c-Acrobot-v1/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-Acrobot-v1/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.13.0-44-generic-x86_64-with-debian-bullseye-sid #49~20.04.1-Ubuntu SMP Wed May 18 18:44:28 UTC 2022
|
2 |
+
Python: 3.7.10
|
3 |
+
Stable-Baselines3: 1.5.1a8
|
4 |
+
PyTorch: 1.11.0
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.2
|
7 |
+
Gym: 0.21.0
|
args.yml
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - algo
|
3 |
+
- a2c
|
4 |
+
- - env
|
5 |
+
- Acrobot-v1
|
6 |
+
- - env_kwargs
|
7 |
+
- null
|
8 |
+
- - eval_episodes
|
9 |
+
- 10
|
10 |
+
- - eval_freq
|
11 |
+
- 10000
|
12 |
+
- - gym_packages
|
13 |
+
- []
|
14 |
+
- - hyperparams
|
15 |
+
- null
|
16 |
+
- - log_folder
|
17 |
+
- rl-trained-agents/
|
18 |
+
- - log_interval
|
19 |
+
- -1
|
20 |
+
- - n_evaluations
|
21 |
+
- 20
|
22 |
+
- - n_jobs
|
23 |
+
- 1
|
24 |
+
- - n_startup_trials
|
25 |
+
- 10
|
26 |
+
- - n_timesteps
|
27 |
+
- -1
|
28 |
+
- - n_trials
|
29 |
+
- 10
|
30 |
+
- - num_threads
|
31 |
+
- -1
|
32 |
+
- - optimize_hyperparameters
|
33 |
+
- false
|
34 |
+
- - pruner
|
35 |
+
- median
|
36 |
+
- - sampler
|
37 |
+
- tpe
|
38 |
+
- - save_freq
|
39 |
+
- -1
|
40 |
+
- - save_replay_buffer
|
41 |
+
- false
|
42 |
+
- - seed
|
43 |
+
- 951484142
|
44 |
+
- - storage
|
45 |
+
- null
|
46 |
+
- - study_name
|
47 |
+
- null
|
48 |
+
- - tensorboard_log
|
49 |
+
- ''
|
50 |
+
- - trained_agent
|
51 |
+
- ''
|
52 |
+
- - truncate_last_trajectory
|
53 |
+
- true
|
54 |
+
- - uuid
|
55 |
+
- true
|
56 |
+
- - vec_env
|
57 |
+
- dummy
|
58 |
+
- - verbose
|
59 |
+
- 1
|
config.yml
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - ent_coef
|
3 |
+
- 0.0
|
4 |
+
- - n_envs
|
5 |
+
- 16
|
6 |
+
- - n_timesteps
|
7 |
+
- 500000.0
|
8 |
+
- - normalize
|
9 |
+
- true
|
10 |
+
- - policy
|
11 |
+
- MlpPolicy
|
env_kwargs.yml
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0df1711a2d110b3a1d2c156ded33aa4a20c9acec405cd34b6740fa787c0d90a4
|
3 |
+
size 959040
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -79.8, "std_reward": 5.436910887627275, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-06-02T17:17:37.640650"}
|
train_eval_metrics.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:554547dc64c7457144f1a2d9efaff450b24fbb994c878cc65f5f252ce5be9e69
|
3 |
+
size 126539
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:02d058f92fc52d04b8a9df488adb24abd2e0ae2f5499b92e4302b35166f46f5f
|
3 |
+
size 4761
|