--- library_name: stable-baselines3 tags: - Walker2d-v3 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: ARS results: - metrics: - type: mean_reward value: 2958.36 +/- 195.43 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: Walker2d-v3 type: Walker2d-v3 --- # **ARS** Agent playing **Walker2d-v3** This is a trained model of a **ARS** agent playing **Walker2d-v3** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo
SB3: https://github.com/DLR-RM/stable-baselines3
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo ars --env Walker2d-v3 -orga sb3 -f logs/ python enjoy.py --algo ars --env Walker2d-v3 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo ars --env Walker2d-v3 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo ars --env Walker2d-v3 -f logs/ -orga sb3 ``` ## Hyperparameters ```python OrderedDict([('alive_bonus_offset', -1), ('delta_std', 0.025), ('learning_rate', 0.03), ('n_delta', 40), ('n_envs', 16), ('n_timesteps', 75000000.0), ('n_top', 30), ('normalize', 'dict(norm_obs=True, norm_reward=False)'), ('policy', 'LinearPolicy'), ('normalize_kwargs', {'norm_obs': True, 'norm_reward': False})]) ```