araffin commited on
Commit
ad5557c
1 Parent(s): f6dc22e

Initial commit

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLanderContinuous-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: TQC
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 279.66 +/- 13.79
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: LunarLanderContinuous-v2
20
+ type: LunarLanderContinuous-v2
21
+ ---
22
+
23
+ # **TQC** Agent playing **LunarLanderContinuous-v2**
24
+ This is a trained model of a **TQC** agent playing **LunarLanderContinuous-v2**
25
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
26
+ and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
27
+
28
+ The RL Zoo is a training framework for Stable Baselines3
29
+ reinforcement learning agents,
30
+ with hyperparameter optimization and pre-trained agents included.
31
+
32
+ ## Usage (with SB3 RL Zoo)
33
+
34
+ RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
35
+ SB3: https://github.com/DLR-RM/stable-baselines3<br/>
36
+ SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
37
+
38
+ ```
39
+ # Download model and save it into the logs/ folder
40
+ python -m utils.load_from_hub --algo tqc --env LunarLanderContinuous-v2 -orga sb3 -f logs/
41
+ python enjoy.py --algo tqc --env LunarLanderContinuous-v2 -f logs/
42
+ ```
43
+
44
+ ## Training (with the RL Zoo)
45
+ ```
46
+ python train.py --algo tqc --env LunarLanderContinuous-v2 -f logs/
47
+ # Upload the model and generate video (when possible)
48
+ python -m utils.push_to_hub --algo tqc --env LunarLanderContinuous-v2 -f logs/ -orga sb3
49
+ ```
50
+
51
+ ## Hyperparameters
52
+ ```python
53
+ OrderedDict([('batch_size', 256),
54
+ ('buffer_size', 1000000),
55
+ ('ent_coef', 'auto'),
56
+ ('gamma', 0.99),
57
+ ('gradient_steps', 1),
58
+ ('learning_rate', 'lin_7.3e-4'),
59
+ ('learning_starts', 10000),
60
+ ('n_timesteps', 500000.0),
61
+ ('policy', 'MlpPolicy'),
62
+ ('policy_kwargs', 'dict(net_arch=[400, 300])'),
63
+ ('tau', 0.01),
64
+ ('train_freq', 1),
65
+ ('normalize', False)])
66
+ ```
args.yml ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - algo
3
+ - tqc
4
+ - - env
5
+ - LunarLanderContinuous-v2
6
+ - - env_kwargs
7
+ - null
8
+ - - eval_episodes
9
+ - 10
10
+ - - eval_freq
11
+ - 10000
12
+ - - gym_packages
13
+ - []
14
+ - - hyperparams
15
+ - null
16
+ - - log_folder
17
+ - rl-trained-agents/
18
+ - - log_interval
19
+ - -1
20
+ - - n_evaluations
21
+ - 20
22
+ - - n_jobs
23
+ - 1
24
+ - - n_startup_trials
25
+ - 10
26
+ - - n_timesteps
27
+ - -1
28
+ - - n_trials
29
+ - 10
30
+ - - num_threads
31
+ - -1
32
+ - - optimize_hyperparameters
33
+ - false
34
+ - - pruner
35
+ - median
36
+ - - sampler
37
+ - tpe
38
+ - - save_freq
39
+ - -1
40
+ - - save_replay_buffer
41
+ - false
42
+ - - seed
43
+ - 160610757
44
+ - - storage
45
+ - null
46
+ - - study_name
47
+ - null
48
+ - - tensorboard_log
49
+ - ''
50
+ - - trained_agent
51
+ - ''
52
+ - - truncate_last_trajectory
53
+ - true
54
+ - - uuid
55
+ - false
56
+ - - vec_env
57
+ - dummy
58
+ - - verbose
59
+ - 1
config.yml ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - batch_size
3
+ - 256
4
+ - - buffer_size
5
+ - 1000000
6
+ - - ent_coef
7
+ - auto
8
+ - - gamma
9
+ - 0.99
10
+ - - gradient_steps
11
+ - 1
12
+ - - learning_rate
13
+ - lin_7.3e-4
14
+ - - learning_starts
15
+ - 10000
16
+ - - n_timesteps
17
+ - 500000.0
18
+ - - policy
19
+ - MlpPolicy
20
+ - - policy_kwargs
21
+ - dict(net_arch=[400, 300])
22
+ - - tau
23
+ - 0.01
24
+ - - train_freq
25
+ - 1
env_kwargs.yml ADDED
@@ -0,0 +1 @@
 
 
1
+ {}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:abf573be3d8d66c880b70bac1f5ed2b793ebee7325721905d496820d4bbafcb1
3
+ size 190911
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 279.6573786, "std_reward": 13.789651466260263, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-06-02T21:03:31.810702"}
tqc-LunarLanderContinuous-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:683f9604740f999667b98cbbe01ef8a3bb79d12795d4a7241dc8319b582709aa
3
+ size 5777283
tqc-LunarLanderContinuous-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.1a8
tqc-LunarLanderContinuous-v2/actor.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1ac637bdc10c75db5c44a2792de476da58bacf4cb02dd880af9f54a38cf7977e
3
+ size 1005173
tqc-LunarLanderContinuous-v2/critic.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e16519f5a1cccf3158b12d05ea8c96729e2116f4b8b118e551fc87e114e46c50
3
+ size 2121885
tqc-LunarLanderContinuous-v2/data ADDED
@@ -0,0 +1,122 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gASVKgAAAAAAAACMGHNiM19jb250cmliLnRxYy5wb2xpY2llc5SMCVRRQ1BvbGljeZSTlC4=",
5
+ "__module__": "sb3_contrib.tqc.policies",
6
+ "__doc__": "\n Policy class (with both actor and critic) for TQC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the feature extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_quantiles: Number of quantiles for the critic.\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
7
+ "__init__": "<function TQCPolicy.__init__ at 0x7f0387bdb710>",
8
+ "_build": "<function TQCPolicy._build at 0x7f0387bdb7a0>",
9
+ "_get_constructor_parameters": "<function TQCPolicy._get_constructor_parameters at 0x7f0387bdb830>",
10
+ "reset_noise": "<function TQCPolicy.reset_noise at 0x7f0387bdb8c0>",
11
+ "make_actor": "<function TQCPolicy.make_actor at 0x7f0387bdb950>",
12
+ "make_critic": "<function TQCPolicy.make_critic at 0x7f0387bdb9e0>",
13
+ "forward": "<function TQCPolicy.forward at 0x7f0387bdba70>",
14
+ "_predict": "<function TQCPolicy._predict at 0x7f0387bdbb00>",
15
+ "set_training_mode": "<function TQCPolicy.set_training_mode at 0x7f0387bdbb90>",
16
+ "__abstractmethods__": "frozenset()",
17
+ "_abc_impl": "<_abc_data object at 0x7f0387c3b690>"
18
+ },
19
+ "verbose": 1,
20
+ "policy_kwargs": {
21
+ "net_arch": [
22
+ 400,
23
+ 300
24
+ ],
25
+ "use_sde": false
26
+ },
27
+ "observation_space": {
28
+ ":type:": "<class 'gym.spaces.box.Box'>",
29
+ ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMA2xvd5SMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlGgGjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwiFlGgKiUMgAACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UdJRijARoaWdolGgQaBJLAIWUaBSHlFKUKEsBSwiFlGgKiUMgAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UdJRijA1ib3VuZGVkX2JlbG93lGgQaBJLAIWUaBSHlFKUKEsBSwiFlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiiUMIAAAAAAAAAACUdJRijA1ib3VuZGVkX2Fib3ZllGgQaBJLAIWUaBSHlFKUKEsBSwiFlGgoiUMIAAAAAAAAAACUdJRijApfbnBfcmFuZG9tlE6MBl9zaGFwZZRLCIWUdWIu",
30
+ "dtype": "float32",
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null,
36
+ "_shape": [
37
+ 8
38
+ ]
39
+ },
40
+ "action_space": {
41
+ ":type:": "<class 'gym.spaces.box.Box'>",
42
+ ":serialized:": "gASVFwwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMA2xvd5SMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlGgGjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwKFlGgKiUMIAACAvwAAgL+UdJRijARoaWdolGgQaBJLAIWUaBSHlFKUKEsBSwKFlGgKiUMIAACAPwAAgD+UdJRijA1ib3VuZGVkX2JlbG93lGgQaBJLAIWUaBSHlFKUKEsBSwKFlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiiUMCAQGUdJRijA1ib3VuZGVkX2Fib3ZllGgQaBJLAIWUaBSHlFKUKEsBSwKFlGgoiUMCAQGUdJRijApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBJfX3JhbmRvbXN0YXRlX2N0b3KUk5SMB01UMTk5MzeUhZRSlH2UKIwNYml0X2dlbmVyYXRvcpRoOIwFc3RhdGWUfZQojANrZXmUaBBoEksAhZRoFIeUUpQoSwFNcAKFlGgHjAJ1NJSJiIeUUpQoSwNoC05OTkr/////Sv////9LAHSUYolCwAkAAAAAAIBTwrOchwO1k3Lsq1vo5rLyz7aB2tUG72GhMU2ga7XM2RPmGJ90nHkvyKUbgMR5AUmeD0PkXeAYk5ITVczUSilk0giVvjTQnkRyegPwrb8Kc5t7PulgsQbadQNFC2591hZq6wQ0ZoO38/WlL2nvQmNDtVz3wndSzEZENy0IiW7Qjq53+xi2gE97nvlPMuwS2LmOXoWpGcquPXYtZytCgJ7F7scf9SIBXUvPJA/MGVJkRFeYcJ0K9RIXtela3jvE/0HPOrFftofdM9hYiaqizX97P8mUt2wPQx8xmX0bYJCrtwcdGUzeyPuOugD1z6ka3iX+IAalFvzQduPBTvXKQ9MBWnnfUFetzaqYhTrP0WHhMA/Ht9nWRUX4vUiuWi77gKSTLtizn2cHsqRyJMj43mOVvrbJtm3T5laAgDosou93H+ZNC0HiTVqmVP8Lsv3/JsoIWfaq43/tiUiTGgfVTTF1psbquA6tH5Icya9TC+0oH7X0htvTuZKBVDKM0C+fIAM8l/emTHKVm2ft/85WlYRpZ+XoFwvDLSCusSBQr4f7w/xdYy4GCKdeDDOfezLj5k6WvjminpO26pfQqfP9LJIYOUEgrwmoo5vMHp8a36i8kcQzwqUvi94rCQuS64xYFp7HcUF1aySvLmqGyXEyCeTa2GHwNpeYB9u4jyPRKocxbWSV4hOL16R9fH95KLmFfUaMD8zrZmLG5rLUfzMf1WOxNFwZpzInS+HWE1F4MWg2xcVst8upoi9ssNCNjtPbz1ley6m8DG7YZVNupay35yQ8/PAfu8uKRQsL7B4ArDFquqb66ABeDLPvviZ4c6y9Bi67Xye+uu6eNlYO/Boq5iiETBR9Kemi0T1eFf33JRNzywY9CJ1N9eTOb+3wxY/yK3iXhVISAMufwZby3YMCHwTAVr8o4ahkQaNipnYgwDvQT4XYuqBpmVAsUw41MjHfK43kXZ7UxPi/bB0FEr1H6UYynEiI2V3I7DDEsMFNEMyF3sA+J2YPBAGe9oh5woVr3lu3AeREERRPmD778jQMODrzkRfg4w7Zi1M+ozc9CW5Lim4SEBBFW6Q0ZKHiBgOBwE8pmXhOE1/4b4TsSX1+ZYlw/f1KJ/Doyf4YSKwzVGEdjTldkdS/lbivyQPaNIsxj4ggvb4u1CtbuK3vLbz6wSJwugR9g6TL1kkXqXR9H6xcRrB/5EQf0u+1EnjLN/GvsqKw2mvVrG/Vp7kINdL5dPO44b8Emce+3xqudjVdYf1J2QI56iTowjwYEK2NMLEnklukjknSLQDrqYlpFb0sx8/oKKXf9xVFD243YpO1XejusnBjhcKePsMmaqtTCh8MOXsSTQ+g3vDQeHxgc7LyqE/DtXwAt2Nmft5i2MJAiV1C8dszUjvdG0ItC9AYUxdQInTbakZGpO9lfldZKLOpuBfpMmYjosMX3Bylh5qUHtwPB6V+p2nMdGbKNFshf1v7Di6P/9oNGA/ZKCI4Cr8P/3/RJuAr8TQVDJyWE1UCRsrBeEDEoZzOm8mjDSYUVQC3/l9PkoCyZBMC3ynQWysYwNN+ThHNmCplKb6KFVFLfvVPHe3CkYDWCij8Ah8mHyyUkLeGRHU4YI3ssA8YLBsz2seUpJTi66EmJ9/X3qH2rWQ8yV3r3z0x8otWS8KXuh8JG6s9Rbjpx4koT3nWxAPW/xwrQcrUma4FMJcB6UJQIgU0saTe0xc1Wa64UXejfFvhXhPUgBgh8F3IRUeEghk4T8kRjv11pDDyeNgS1DpjBnqQ0IFh+uOrY6CUhNxF3AOYg0vjaujoedtaAtlDwJ78SI9UG1YfCG8ZQcrUU043NHNeBPXMoSD5YCKB64rhBUjF0hMzhi9TJi+lAm4l37EYPWejsFggpd1XhoOWxGdZIyZL7NPJO8LT5OAEwI2ky90KGNoH9dOsxWybS+A+YJizCfTrsxNhZ+bmgKqqY1yKqhF8UvY7abEVPVUxwoOvEcF0FSFIblSYB6vHzooATK1uwJufo46PxjTZXBXKfNd3RYl8uKh4YxkhIzV6d5Z9NzWZDoKl0PEmpSZTzr8qwEvcFvRLY0CoXKwUlkrEPAt6PzHP7EfwjEQfOWSKI0f7YgirTrrcUDCLrCDp2ByvIOpD6U0PCfz3yfKWtxhKGKAOu2sUE17MrHdmOmQ8Kc9R5AHiElStgJQnLkLLK0L/HVSwHIp7P9pI0RaeVafNh0l/Y+govRh+ZpHcqlfOL1rHcEc+CTVx2aB1WSp68UnQNR1MEVCP+aFoqpxpPSsokuDL/XUCFZbidfv6QB2BHRvWICx4jRNswO2iEG6qpRl+ox9Qqx0jy/Zp5R3T4io6M8EV7tNlELs5RiZ/vz1JFOnD2Cy3i3PHu0tqnwmcW3aR4qGp3e8GCqm+WzG/HQNw8L5uj+oiV0qICfkPtM+N5YvMnWCamTWZUo7JY6/9nOVFN97zISwyxFyB0/Fs67EuOU7CjW4WH02Meg7P/FucjrYjj1nNPn0ZQI20AvvhSqOVGjJdnkQsSOFOf4Xl9h8SRjZOdKyAo7hbBv/EPjVLiYEvstxTIXvrJtXtjHQvpXZAahJ/KEcWoxAmz+Fos89bXyZYlv9QOX3Rk31MTNx1e9myYJ6rMJqALpgMend+in7mcBBKdP8HK3aPvP7pyeX9pmHqgqznGsQya7OksVtc1Wh/2E2ZfkTQNDYzy4Gqp5b3mnrPzJKc7FREA7byhhaxtXJ5ho2VYtms60gxkNGONt5xJLAwuWsGHDiZlWG3gOA5DEjX4/uw8dksx/z1T7ly1/WsPSvUBeDJePM7Eq8LFYyGvPoCHX37NqX9sAinD7RXs+rzk9FA7hR5JyYzA4NHyNw58gu4yajvFeF6Zj8mq06dySURoZqkx4aWSJ5+9CTH0vkRa8ufqy0jjNE/illfH2I7PXsgomYo5UeAIgA6KF5vRvCSM2Qi2V9g7cvN4ss+4EM0sWDu1C7k09bLbxricGwT+CzIS15G8XYQJgUg4mDTp3NzvshbDuj7PVDkA/EuD26/IWeJhY24nKTut+UsKZhyDWA3rnsJZ9/xh8+vS6Qo5qZyj3hfWcV3KujEeJCVFdo/3UM6oy54jWkJqzJFC3SO1tbDF0RXLM/cbNRlcFaprTFcLPB7b1zGDZqLAq64ABV9oIT8+3VwlerzC+WIXzWwwM8xujB3367Ja4TGr977ZbfBZ5XeFWh+iITJKMGsk9ZUlb375ShwlsLSmk3Dma0eS2RmpSTqRW1SBVDgKPi52P9uW5nNypaMi84Ik7nYz7FxBjzTwSLxP+XDBL1OC67NDd7QpHuGm2A1xfX9eEK8C5R0lGKMA3Bvc5RNcAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVijAZfc2hhcGWUSwKFlHViLg==",
43
+ "dtype": "float32",
44
+ "low": "[-1. -1.]",
45
+ "high": "[1. 1.]",
46
+ "bounded_below": "[ True True]",
47
+ "bounded_above": "[ True True]",
48
+ "_np_random": "RandomState(MT19937)",
49
+ "_shape": [
50
+ 2
51
+ ]
52
+ },
53
+ "n_envs": 1,
54
+ "num_timesteps": 241487,
55
+ "_total_timesteps": 500000,
56
+ "_num_timesteps_at_start": 0,
57
+ "seed": 0,
58
+ "action_noise": null,
59
+ "start_time": 1614859727.3847883,
60
+ "learning_rate": {
61
+ ":type:": "<class 'function'>",
62
+ ":serialized:": "gASVngMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsCSxNDCHwAiAAUAFMAlIyECiAgICAgICAgUHJvZ3Jlc3Mgd2lsbCBkZWNyZWFzZSBmcm9tIDEgKGJlZ2lubmluZykgdG8gMAogICAgICAgIDpwYXJhbSBwcm9ncmVzc19yZW1haW5pbmc6IChmbG9hdCkKICAgICAgICA6cmV0dXJuOiAoZmxvYXQpCiAgICAgICAglIWUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjFovdm9sdW1lL1VTRVJTVE9SRS9yYWZmX2FuL3Byb2plY3RzL2V4cGVyaW1lbnRzL3JlbGVhc2UxLjAvcmwtYmFzZWxpbmVzMy16b28vdXRpbHMvdXRpbHMucHmUjARmdW5jlEv+QwIABpSMDWluaXRpYWxfdmFsdWWUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjAV1dGlsc5SMCF9fbmFtZV9flIwLdXRpbHMudXRpbHOUjAhfX2ZpbGVfX5SMWi92b2x1bWUvVVNFUlNUT1JFL3JhZmZfYW4vcHJvamVjdHMvZXhwZXJpbWVudHMvcmVsZWFzZTEuMC9ybC1iYXNlbGluZXMzLXpvby91dGlscy91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGghfZR9lChoGGgPjAxfX3F1YWxuYW1lX1+UjB1saW5lYXJfc2NoZWR1bGUuPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lCiMEnByb2dyZXNzX3JlbWFpbmluZ5SMCGJ1aWx0aW5zlIwFZmxvYXSUk5SMBnJldHVybpRoLnWMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgZjAdfX2RvY19flGgKjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/R+uvECNjsoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
63
+ },
64
+ "tensorboard_log": null,
65
+ "lr_schedule": {
66
+ ":type:": "<class 'function'>",
67
+ ":serialized:": "gASVngMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsCSxNDCHwAiAAUAFMAlIyECiAgICAgICAgUHJvZ3Jlc3Mgd2lsbCBkZWNyZWFzZSBmcm9tIDEgKGJlZ2lubmluZykgdG8gMAogICAgICAgIDpwYXJhbSBwcm9ncmVzc19yZW1haW5pbmc6IChmbG9hdCkKICAgICAgICA6cmV0dXJuOiAoZmxvYXQpCiAgICAgICAglIWUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjFovdm9sdW1lL1VTRVJTVE9SRS9yYWZmX2FuL3Byb2plY3RzL2V4cGVyaW1lbnRzL3JlbGVhc2UxLjAvcmwtYmFzZWxpbmVzMy16b28vdXRpbHMvdXRpbHMucHmUjARmdW5jlEv+QwIABpSMDWluaXRpYWxfdmFsdWWUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjAV1dGlsc5SMCF9fbmFtZV9flIwLdXRpbHMudXRpbHOUjAhfX2ZpbGVfX5SMWi92b2x1bWUvVVNFUlNUT1JFL3JhZmZfYW4vcHJvamVjdHMvZXhwZXJpbWVudHMvcmVsZWFzZTEuMC9ybC1iYXNlbGluZXMzLXpvby91dGlscy91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGghfZR9lChoGGgPjAxfX3F1YWxuYW1lX1+UjB1saW5lYXJfc2NoZWR1bGUuPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lCiMEnByb2dyZXNzX3JlbWFpbmluZ5SMCGJ1aWx0aW5zlIwFZmxvYXSUk5SMBnJldHVybpRoLnWMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgZjAdfX2RvY19flGgKjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/R+uvECNjsoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
68
+ },
69
+ "_last_obs": null,
70
+ "_last_episode_starts": null,
71
+ "_last_original_obs": {
72
+ ":type:": "<class 'numpy.ndarray'>",
73
+ ":serialized:": "gASVqgAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwFLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUMgTeH9vT0rI7sf5a87f+aUOzSkhDwgg4C8AACAPwAAAACUdJRiLg=="
74
+ },
75
+ "_episode_num": 716,
76
+ "use_sde": false,
77
+ "sde_sample_freq": -1,
78
+ "_current_progress_remaining": 0.517026,
79
+ "ep_info_buffer": {
80
+ ":type:": "<class 'collections.deque'>",
81
+ ":serialized:": "gASVJBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI7QvohTs8ckCUhpRSlIwBbJRLx4wBdJRHQKPilbfP5YZ1fZQoaAZoCWgPQwjgLvt150NzQJSGlFKUaBVLz2gWR0Cj5os9B8hLdX2UKGgGaAloD0MIsI7jh0oockCUhpRSlGgVTXMBaBZHQKPtxBSk0rN1fZQoaAZoCWgPQwiitaLNsRByQJSGlFKUaBVL1GgWR0Cj8c/51vETdX2UKGgGaAloD0MId4apLTVXcUCUhpRSlGgVS8BoFkdAo/V6IgvDg3V9lChoBmgJaA9DCKN2vwpwoHJAlIaUUpRoFUvSaBZHQKP5dyiEg4h1fZQoaAZoCWgPQwgmAWpq2VhxQJSGlFKUaBVLlmgWR0Cj/E9zGPxQdX2UKGgGaAloD0MIeouH95yHcUCUhpRSlGgVS65oFkdAo/+e8brC33V9lChoBmgJaA9DCOlhaHXyd3BAlIaUUpRoFUukaBZHQKQCuzfJmul1fZQoaAZoCWgPQwiJsyJqohpwQJSGlFKUaBVLq2gWR0CkBft96TnrdX2UKGgGaAloD0MI5BQdySW5cECUhpRSlGgVS9NoFkdApAoBzq8lHHV9lChoBmgJaA9DCKW/l8JDlXFAlIaUUpRoFUvAaBZHQKQNq8Djin51fZQoaAZoCWgPQwghrTHohHpyQJSGlFKUaBVL22gWR0CkEdmMOwxGdX2UKGgGaAloD0MIfF9cqhIcc0CUhpRSlGgVS55oFkdApBTcZccENnV9lChoBmgJaA9DCAaE1sPXhHFAlIaUUpRoFUu+aBZHQKQYe10knkV1fZQoaAZoCWgPQwjhYdo39wJxQJSGlFKUaBVL1WgWR0CkHIg8KXv6dX2UKGgGaAloD0MImiLA6R2HcECUhpRSlGgVS5BoFkdApB9DPGACn3V9lChoBmgJaA9DCEhrDDph8XFAlIaUUpRoFUv5aBZHQKQkCbJfYz11fZQoaAZoCWgPQwhUxyqlZ4VyQJSGlFKUaBVL0mgWR0CkKA2y1NQCdX2UKGgGaAloD0MIzR/T2jTPcECUhpRSlGgVS9BoFkdApCwIis4kvHV9lChoBmgJaA9DCBizJativHBAlIaUUpRoFUumaBZHQKQvLljEvTR1fZQoaAZoCWgPQwj6RQn6C/hyQJSGlFKUaBVLx2gWR0CkMvmJemeldX2UKGgGaAloD0MIPKWD9f+pb0CUhpRSlGgVS5poFkdApDXkWCVbA3V9lChoBmgJaA9DCBTLLa1GY3NAlIaUUpRoFUvCaBZHQKQ5l29L6DZ1fZQoaAZoCWgPQwiAgosVNU5tQJSGlFKUaBVNKgNoFkdApEmARh+fAnV9lChoBmgJaA9DCMQ/bOmR9nBAlIaUUpRoFUuOaBZHQKRMMOSW7e51fZQoaAZoCWgPQwjlszwPbrFxQJSGlFKUaBVL4GgWR0CkUH5YPoV3dX2UKGgGaAloD0MIhZhLqvZBcECUhpRSlGgVS8doFkdApFRL5VOsT3V9lChoBmgJaA9DCNyEe2UennBAlIaUUpRoFUuKaBZHQKRW6Q7tAs11fZQoaAZoCWgPQwhENSVZR75wQJSGlFKUaBVLm2gWR0CkWdlZHNHIdX2UKGgGaAloD0MINZiG4SN8ckCUhpRSlGgVS+loFkdApF5Oza9K3HV9lChoBmgJaA9DCHkFoiel73FAlIaUUpRoFUu+aBZHQKRh6XEZR9B1fZQoaAZoCWgPQwg6IAn7diRvQJSGlFKUaBVLj2gWR0CkZJ6tDD0ldX2UKGgGaAloD0MIY15HHHKCckCUhpRSlGgVS7VoFkdApGgT5dnkDXV9lChoBmgJaA9DCMHIy5rYXHRAlIaUUpRoFUuxaBZHQKRrdzVc2R91fZQoaAZoCWgPQwhcHmtGhuByQJSGlFKUaBVL82gWR0CkcCImPYFrdX2UKGgGaAloD0MIEVK3s2+TcUCUhpRSlGgVS6RoFkdApHM8nNPgvXV9lChoBmgJaA9DCBsQIa7cPXFAlIaUUpRoFUuMaBZHQKR15MFlkH51fZQoaAZoCWgPQwjcSq/NRgBvQJSGlFKUaBVLlWgWR0CkeLb+1jRVdX2UKGgGaAloD0MIk1LQ7WVpckCUhpRSlGgVTQABaBZHQKR9pT6zmfZ1fZQoaAZoCWgPQwjzWgndpQFzQJSGlFKUaBVL62gWR0CkgiKZ+hGpdX2UKGgGaAloD0MIgQTFj7GqcUCUhpRSlGgVS5RoFkdApIT5MnJDE3V9lChoBmgJaA9DCOG4jJvaI3FAlIaUUpRoFUu4aBZHQKSIecDKYAt1fZQoaAZoCWgPQwhWEW4y6mVyQJSGlFKUaBVL4GgWR0CkjMehoM8YdX2UKGgGaAloD0MIs/D1ta7VcUCUhpRSlGgVS5doFkdApI+1UOuq3nV9lChoBmgJaA9DCBCugEI91HJAlIaUUpRoFUvOaBZHQKSTuo+fRNR1fZQoaAZoCWgPQwhCCp5C7rJxQJSGlFKUaBVLwWgWR0Ckm31K5CnhdX2UKGgGaAloD0MIG6GfqVdhc0CUhpRSlGgVS9doFkdApJ+rmuDBdnV9lChoBmgJaA9DCGSUZ16OSXBAlIaUUpRoFUvsaBZHQKSkS58Sf191fZQoaAZoCWgPQwjKjLeVnlRxQJSGlFKUaBVLrWgWR0Ckp6ffGdZrdX2UKGgGaAloD0MI8E4+PfaRcUCUhpRSlGgVS9poFkdApKvpbKRuCXV9lChoBmgJaA9DCABXsmPjWnFAlIaUUpRoFUuUaBZHQKSuxo7muDB1fZQoaAZoCWgPQwhl3xXB/81vQJSGlFKUaBVLmmgWR0CkscJ35eqrdX2UKGgGaAloD0MIbD6uDVWfcUCUhpRSlGgVS7ZoFkdApLVFLamGd3V9lChoBmgJaA9DCFQaMbNPe3FAlIaUUpRoFUudaBZHQKS4TzS1E3N1fZQoaAZoCWgPQwh9yjFZ3LRyQJSGlFKUaBVLwGgWR0CkvAxhDw6RdX2UKGgGaAloD0MIx6F+F3YhckCUhpRSlGgVS+RoFkdApMCG4RVZLnV9lChoBmgJaA9DCKnCn+HNOXJAlIaUUpRoFUuIaBZHQKTDJ2dNFjN1fZQoaAZoCWgPQwiRJt4BHuBzQJSGlFKUaBVLyWgWR0CkxxPZqVQidX2UKGgGaAloD0MIog3ABoRmcUCUhpRSlGgVS4loFkdApMm6RfWtl3V9lChoBmgJaA9DCF+1MuHXw3FAlIaUUpRoFUvUaBZHQKTN1mBe5Wl1fZQoaAZoCWgPQwgAyAkTxhZtQJSGlFKUaBVNTANoFkdApN+OCyyD7XV9lChoBmgJaA9DCO8cylBVdXJAlIaUUpRoFUvCaBZHQKTjWDdP+GZ1fZQoaAZoCWgPQwjSb18HzgZuQJSGlFKUaBVLoGgWR0Ck5m9i+cpcdX2UKGgGaAloD0MIQrPr3opOcUCUhpRSlGgVS7toFkdApOoQJE6T4nV9lChoBmgJaA9DCGtlwi/1XHNAlIaUUpRoFUu5aBZHQKTtt6Rhc7h1fZQoaAZoCWgPQwii8Nk6+GlzQJSGlFKUaBVNBQFoFkdApPLbnxJ/X3V9lChoBmgJaA9DCOQuwhQle3NAlIaUUpRoFUv/aBZHQKT34dJ8OTd1fZQoaAZoCWgPQwhQjgJEwXdvQJSGlFKUaBVLoGgWR0Ck+wSk9ECvdX2UKGgGaAloD0MIhXmPM40gc0CUhpRSlGgVS9RoFkdApP8rZQHiWHV9lChoBmgJaA9DCIRkARP4CXBAlIaUUpRoFUulaBZHQKUCXv+fh/B1fZQoaAZoCWgPQwgof/eOGgtxQJSGlFKUaBVLzmgWR0ClBmkC3gDSdX2UKGgGaAloD0MIbmsLz4vycECUhpRSlGgVS8BoFkdApQoy2+fyw3V9lChoBmgJaA9DCFThz/BmF3NAlIaUUpRoFUvvaBZHQKUO80qpcX51fZQoaAZoCWgPQwiq8j0jEdFxQJSGlFKUaBVL6mgWR0ClE5OsT37DdX2UKGgGaAloD0MIY7g6AGIpcUCUhpRSlGgVS+toFkdApRg45vLowHV9lChoBmgJaA9DCGHj+ne9PnNAlIaUUpRoFUvTaBZHQKUcZXz19OR1fZQoaAZoCWgPQwj8Uj9v6mxxQJSGlFKUaBVLpGgWR0ClH5tCRfWudX2UKGgGaAloD0MIVyJQ/YM4b0CUhpRSlGgVTRYBaBZHQKUlHFlTWG11fZQoaAZoCWgPQwhLcsCuZqNyQJSGlFKUaBVL+WgWR0ClKg3bdrO8dX2UKGgGaAloD0MI2h8ot222c0CUhpRSlGgVS9poFkdApS5dXV9WqHV9lChoBmgJaA9DCA/R6A7ipnNAlIaUUpRoFUvDaBZHQKUyOAZsKsx1fZQoaAZoCWgPQwhCXg8mBelxQJSGlFKUaBVLuGgWR0ClNdkR8MNMdX2UKGgGaAloD0MImIqNed1UcUCUhpRSlGgVS5VoFkdApTjHQnhKlHV9lChoBmgJaA9DCG4xPzc0sXJAlIaUUpRoFUu/aBZHQKU8jXPqs2h1fZQoaAZoCWgPQwgomgewyHlxQJSGlFKUaBVLt2gWR0ClQCGjsUqQdX2UKGgGaAloD0MIpb3BFyYwckCUhpRSlGgVS7hoFkdApUO4dQwbl3V9lChoBmgJaA9DCNh9x/BYknBAlIaUUpRoFUuPaBZHQKVGg1uR9w51fZQoaAZoCWgPQwiVgJiES6ZyQJSGlFKUaBVL42gWR0ClSv5avA45dX2UKGgGaAloD0MI1VqYhXarbkCUhpRSlGgVS71oFkdApU6xm5DqnnV9lChoBmgJaA9DCHL75ZNVFHFAlIaUUpRoFU0iAWgWR0ClVGVi4J/odX2UKGgGaAloD0MIol7wac64cUCUhpRSlGgVS+FoFkdApViyliz9j3V9lChoBmgJaA9DCL8OnDMipnNAlIaUUpRoFUu9aBZHQKVcThnanJl1fZQoaAZoCWgPQwhd/G1P0FNwQJSGlFKUaBVL9GgWR0ClZzknLJS0dX2UKGgGaAloD0MIS1tc4zNzbkCUhpRSlGgVS8NoFkdApWrtnM+u/3V9lChoBmgJaA9DCFTm5hvRtG9AlIaUUpRoFUvgaBZHQKVvNc9GI9F1fZQoaAZoCWgPQwj1K50PD6hxQJSGlFKUaBVLwGgWR0ClctyRSxZ/dX2UKGgGaAloD0MIhT/DmzWrckCUhpRSlGgVS51oFkdApXXcBU70WnV9lChoBmgJaA9DCD6w479A83BAlIaUUpRoFUukaBZHQKV4+UO/cnF1fZQoaAZoCWgPQwiDwMqhBeRyQJSGlFKUaBVL7GgWR0ClfX6Wom5UdWUu"
82
+ },
83
+ "ep_success_buffer": {
84
+ ":type:": "<class 'collections.deque'>",
85
+ ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
86
+ },
87
+ "_n_updates": 231487,
88
+ "buffer_size": 1,
89
+ "batch_size": 256,
90
+ "learning_starts": 10000,
91
+ "tau": 0.01,
92
+ "gamma": 0.99,
93
+ "gradient_steps": 1,
94
+ "optimize_memory_usage": false,
95
+ "replay_buffer_class": {
96
+ ":type:": "<class 'abc.ABCMeta'>",
97
+ ":serialized:": "gASVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
98
+ "__module__": "stable_baselines3.common.buffers",
99
+ "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device:\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
100
+ "__init__": "<function ReplayBuffer.__init__ at 0x7f03883b4b90>",
101
+ "add": "<function ReplayBuffer.add at 0x7f03883b4c20>",
102
+ "sample": "<function ReplayBuffer.sample at 0x7f0387f1b7a0>",
103
+ "_get_samples": "<function ReplayBuffer._get_samples at 0x7f0387f1b830>",
104
+ "__abstractmethods__": "frozenset()",
105
+ "_abc_impl": "<_abc_data object at 0x7f038840c5d0>"
106
+ },
107
+ "replay_buffer_kwargs": {},
108
+ "train_freq": {
109
+ ":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
110
+ ":serialized:": "gASVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
111
+ },
112
+ "use_sde_at_warmup": false,
113
+ "target_entropy": -2.0,
114
+ "ent_coef": "auto",
115
+ "target_update_interval": 1,
116
+ "top_quantiles_to_drop_per_net": 2,
117
+ "_last_dones": {
118
+ ":type:": "<class 'numpy.ndarray'>",
119
+ ":serialized:": "gASViQAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwGFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDAQCUdJRiLg=="
120
+ },
121
+ "remove_time_limit_termination": false
122
+ }
tqc-LunarLanderContinuous-v2/ent_coef_optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:57c5b5411d62c17223620486ed4adaf9d20fafd3f85491a3e8b31bcb123a408c
3
+ size 1255
tqc-LunarLanderContinuous-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:71a0d57701b470aaf537cef10291953bd620691955531ee04ce89886fc597419
3
+ size 2626565
tqc-LunarLanderContinuous-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b85e8410a75107556ac3c00b808e09e4f6f5771a4e7bde893398f6042568e900
3
+ size 747
tqc-LunarLanderContinuous-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.13.0-44-generic-x86_64-with-debian-bullseye-sid #49~20.04.1-Ubuntu SMP Wed May 18 18:44:28 UTC 2022
2
+ Python: 3.7.10
3
+ Stable-Baselines3: 1.5.1a8
4
+ PyTorch: 1.11.0
5
+ GPU Enabled: True
6
+ Numpy: 1.21.2
7
+ Gym: 0.21.0
train_eval_metrics.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4072b66b80dd28cc87a154218c8d33105d6adfbd74115eb579491fd054179707
3
+ size 24670