araffin commited on
Commit
ae13ea8
1 Parent(s): 4ef8c1b

Initial commit

Browse files
.gitattributes CHANGED
@@ -25,3 +25,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
29
+ vec_normalize.pkl filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - Acrobot-v1
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: TRPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: -87.40 +/- 12.60
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: Acrobot-v1
20
+ type: Acrobot-v1
21
+ ---
22
+
23
+ # **TRPO** Agent playing **Acrobot-v1**
24
+ This is a trained model of a **TRPO** agent playing **Acrobot-v1**
25
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
26
+ and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
27
+
28
+ The RL Zoo is a training framework for Stable Baselines3
29
+ reinforcement learning agents,
30
+ with hyperparameter optimization and pre-trained agents included.
31
+
32
+ ## Usage (with SB3 RL Zoo)
33
+
34
+ RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
35
+ SB3: https://github.com/DLR-RM/stable-baselines3<br/>
36
+ SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
37
+
38
+ ```
39
+ # Download model and save it into the logs/ folder
40
+ python -m utils.load_from_hub --algo trpo --env Acrobot-v1 -orga sb3 -f logs/
41
+ python enjoy.py --algo trpo --env Acrobot-v1 -f logs/
42
+ ```
43
+
44
+ ## Training (with the RL Zoo)
45
+ ```
46
+ python train.py --algo trpo --env Acrobot-v1 -f logs/
47
+ # Upload the model and generate video (when possible)
48
+ python -m utils.push_to_hub --algo trpo --env Acrobot-v1 -f logs/ -orga sb3
49
+ ```
50
+
51
+ ## Hyperparameters
52
+ ```python
53
+ OrderedDict([('n_envs', 2),
54
+ ('n_steps', 1024),
55
+ ('n_timesteps', 100000.0),
56
+ ('normalize', True),
57
+ ('policy', 'MlpPolicy'),
58
+ ('normalize_kwargs', {'norm_obs': True, 'norm_reward': False})])
59
+ ```
args.yml ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - algo
3
+ - trpo
4
+ - - env
5
+ - Acrobot-v1
6
+ - - env_kwargs
7
+ - null
8
+ - - eval_episodes
9
+ - 20
10
+ - - eval_freq
11
+ - 10000
12
+ - - gym_packages
13
+ - []
14
+ - - hyperparams
15
+ - null
16
+ - - log_folder
17
+ - logs
18
+ - - log_interval
19
+ - -1
20
+ - - n_eval_envs
21
+ - 10
22
+ - - n_evaluations
23
+ - 20
24
+ - - n_jobs
25
+ - 1
26
+ - - n_startup_trials
27
+ - 10
28
+ - - n_timesteps
29
+ - -1
30
+ - - n_trials
31
+ - 10
32
+ - - no_optim_plots
33
+ - false
34
+ - - num_threads
35
+ - -1
36
+ - - optimization_log_path
37
+ - null
38
+ - - optimize_hyperparameters
39
+ - false
40
+ - - pruner
41
+ - median
42
+ - - sampler
43
+ - tpe
44
+ - - save_freq
45
+ - -1
46
+ - - save_replay_buffer
47
+ - false
48
+ - - seed
49
+ - 1786045309
50
+ - - storage
51
+ - null
52
+ - - study_name
53
+ - null
54
+ - - tensorboard_log
55
+ - ''
56
+ - - trained_agent
57
+ - ''
58
+ - - truncate_last_trajectory
59
+ - true
60
+ - - uuid
61
+ - false
62
+ - - vec_env
63
+ - dummy
64
+ - - verbose
65
+ - 1
config.yml ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - n_envs
3
+ - 2
4
+ - - n_steps
5
+ - 1024
6
+ - - n_timesteps
7
+ - 100000.0
8
+ - - normalize
9
+ - true
10
+ - - policy
11
+ - MlpPolicy
env_kwargs.yml ADDED
@@ -0,0 +1 @@
 
 
1
+ {}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1b8206e2abdef479f8654552941b68351c704fd2b5e27dddc0ad34d29e295e66
3
+ size 972617
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -87.4, "std_reward": 12.603174203350518, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-06-02T12:57:02.890071"}
train_eval_metrics.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4bce86c35d5ad5d55d3226ff44a9bb2be9f8b9b5c72b0171e1c34cc0816cada2
3
+ size 23768
trpo-Acrobot-v1.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9221c2f9d309ecf179b6cbcb522b23b4ead54fe996df9c9bf549885903ecaac9
3
+ size 99415
trpo-Acrobot-v1/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.1a8
trpo-Acrobot-v1/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f35c1f2c950>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f35c1f2c9e0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f35c1f2ca70>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f35c1f2cb00>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f35c1f2cb90>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f35c1f2cc20>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f35c1f2ccb0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f35c1f2cd40>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f35c1f2cdd0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f35c1f2ce60>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f35c1f2cef0>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f35c1f7d840>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gASVrwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMA2xvd5SMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlGgGjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwaFlGgKiUMYAACAvwAAgL8AAIC/AACAv9sPScHWMeLBlHSUYowEaGlnaJRoEGgSSwCFlGgUh5RSlChLAUsGhZRoColDGAAAgD8AAIA/AACAPwAAgD/bD0lB1jHiQZR0lGKMDWJvdW5kZWRfYmVsb3eUaBBoEksAhZRoFIeUUpQoSwFLBoWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQwYBAQEBAQGUdJRijA1ib3VuZGVkX2Fib3ZllGgQaBJLAIWUaBSHlFKUKEsBSwaFlGgoiUMGAQEBAQEBlHSUYowKX25wX3JhbmRvbZROjAZfc2hhcGWUSwaFlHViLg==",
26
+ "dtype": "float32",
27
+ "low": "[ -1. -1. -1. -1. -12.566371 -28.274334]",
28
+ "high": "[ 1. 1. 1. 1. 12.566371 28.274334]",
29
+ "bounded_below": "[ True True True True True True]",
30
+ "bounded_above": "[ True True True True True True]",
31
+ "_np_random": null,
32
+ "_shape": [
33
+ 6
34
+ ]
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gASVTQsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLA4wFZHR5cGWUjAVudW1weZSMBWR0eXBllJOUjAJpOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRijApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBJfX3JhbmRvbXN0YXRlX2N0b3KUk5SMB01UMTk5MzeUhZRSlH2UKIwNYml0X2dlbmVyYXRvcpRoE4wFc3RhdGWUfZQojANrZXmUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoB4wHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAU1wAoWUaAmMAnU0lImIh5RSlChLA2gNTk5OSv////9K/////0sAdJRiiULACQAAAAAAgFPCs5yHA7WTcuyrW+jmsvLPtoHa1QbvYaExTaBrtczZE+YYn3SceS/IpRuAxHkBSZ4PQ+Rd4BiTkhNVzNRKKWTSCJW+NNCeRHJ6A/Ctvwpzm3s+6WCxBtp1A0ULbn3WFmrrBDRmg7fz9aUvae9CY0O1XPfCd1LMRkQ3LQiJbtCOrnf7GLaAT3ue+U8y7BLYuY5ehakZyq49di1nK0KAnsXuxx/1IgFdS88kD8wZUmREV5hwnQr1Ehe16VreO8T/Qc86sV+2h90z2FiJqqLNf3s/yZS3bA9DHzGZfRtgkKu3Bx0ZTN7I+466APXPqRreJf4gBqUW/NB248FO9cpD0wFaed9QV63NqpiFOs/RYeEwD8e32dZFRfi9SK5aLvuApJMu2LOfZweypHIkyPjeY5W+tsm2bdPmVoCAOiyi73cf5k0LQeJNWqZU/wuy/f8myghZ9qrjf+2JSJMaB9VNMXWmxuq4Dq0fkhzJr1ML7SgftfSG29O5koFUMozQL58gAzyX96ZMcpWbZ+3/zlaVhGln5egXC8MtIK6xIFCvh/vD/F1jLgYIp14MM597MuPmTpa+OaKek7bql9Cp8/0skhg5QSCvCaijm8wenxrfqLyRxDPCpS+L3isJC5LrjFgWnsdxQXVrJK8uaobJcTIJ5NrYYfA2l5gH27iPI9EqhzFtZJXiE4vXpH18f3kouYV9RowPzOtmYsbmstR/Mx/VY7E0XBmnMidL4dYTUXgxaDbFxWy3y6miL2yw0I2O09vPWV7LqbwMbthlU26lrLfnJDz88B+7y4pFCwvsHgCsMWq6pvroAF4Ms+++JnhzrL0GLrtfJ7667p42Vg78GirmKIRMFH0p6aLRPV4V/fclE3PLBj0InU315M5v7fDFj/IreJeFUhIAy5/BlvLdgwIfBMBWvyjhqGRBo2KmdiDAO9BPhdi6oGmZUCxTDjUyMd8rjeRdntTE+L9sHQUSvUfpRjKcSIjZXcjsMMSwwU0QzIXewD4nZg8EAZ72iHnChWveW7cB5EQRFE+YPvvyNAw4OvORF+DjDtmLUz6jNz0JbkuKbhIQEEVbpDRkoeIGA4HATymZeE4TX/hvhOxJfX5liXD9/Uon8OjJ/hhIrDNUYR2NOV2R1L+VuK/JA9o0izGPiCC9vi7UK1u4re8tvPrBInC6BH2DpMvWSRepdH0frFxGsH/kRB/S77USeMs38a+yorDaa9Wsb9WnuQg10vl087jhvwSZx77fGq52NV1h/UnZAjnqJOjCPBgQrY0wsSeSW6SOSdItAOupiWkVvSzHz+gopd/3FUUPbjdik7Vd6O6ycGOFwp4+wyZqq1MKHww5exJND6De8NB4fGBzsvKoT8O1fAC3Y2Z+3mLYwkCJXULx2zNSO90bQi0L0BhTF1AidNtqRkak72V+V1kos6m4F+kyZiOiwxfcHKWHmpQe3A8HpX6nacx0Zso0WyF/W/sOLo//2g0YD9koIjgKvw//f9Em4CvxNBUMnJYTVQJGysF4QMShnM6byaMNJhRVALf+X0+SgLJkEwLfKdBbKxjA035OEc2YKmUpvooVUUt+9U8d7cKRgNYKKPwCHyYfLJSQt4ZEdThgjeywDxgsGzPax5SklOLroSYn39feofatZDzJXevfPTHyi1ZLwpe6Hwkbqz1FuOnHiShPedbEA9b/HCtBytSZrgUwlwHpQlAiBTSxpN7TFzVZrrhRd6N8W+FeE9SAGCHwXchFR4SCGThPyRGO/XWkMPJ42BLUOmMGepDQgWH646tjoJSE3EXcA5iDS+Nq6Oh521oC2UPAnvxIj1QbVh8IbxlBytRTTjc0c14E9cyhIPlgIoHriuEFSMXSEzOGL1MmL6UCbiXfsRg9Z6OwWCCl3VeGg5bEZ1kjJkvs08k7wtPk4ATAjaTL3QoY2gf106zFbJtL4D5gmLMJ9OuzE2Fn5uaAqqpjXIqqEXxS9jtpsRU9VTHCg68RwXQVIUhuVJgHq8fOigBMrW7Am5+jjo/GNNlcFcp813dFiXy4qHhjGSEjNXp3ln03NZkOgqXQ8SalJlPOvyrAS9wW9EtjQKhcrBSWSsQ8C3o/Mc/sR/CMRB85ZIojR/tiCKtOutxQMIusIOnYHK8g6kPpTQ8J/PfJ8pa3GEoYoA67axQTXsysd2Y6ZDwpz1HkAeISVK2AlCcuQssrQv8dVLAcins/2kjRFp5Vp82HSX9j6Ci9GH5mkdyqV84vWsdwRz4JNXHZoHVZKnrxSdA1HUwRUI/5oWiqnGk9KyiS4Mv9dQIVluJ1+/pAHYEdG9YgLHiNE2zA7aIQbqqlGX6jH1CrHSPL9mnlHdPiKjozwRXu02UQuzlGJn+/PUkU6cPYLLeLc8e7S2qfCZxbdpHioand7wYKqb5bMb8dA3Dwvm6P6iJXSogJ+Q+0z43li8ydYJqZNZlSjsljr/2c5UU33vMhLDLEXIHT8WzrsS45TsKNbhYfTYx6Ds/8W5yOtiOPWc0+fRlAjbQC++FKo5UaMl2eRCxI4U5/heX2HxJGNk50rICjuFsG/8Q+NUuJgS+y3FMhe+sm1e2MdC+ldkBqEn8oRxajECbP4Wizz1tfJliW/1A5fdGTfUxM3HV72bJgnqswmoAumAx6d36KfuZwEEp0/wcrdo+8/unJ5f2mYeqCrOcaxDJrs6SxW1zVaH/YTZl+RNA0NjPLgaqnlveaes/MkpzsVEQDtvKGFrG1cnmGjZVi2azrSDGQ0Y423nEksDC5awYcOJmVYbeA4DkMSNfj+7Dx2SzH/PVPuXLX9aw9K9QF4Ml48zsSrwsVjIa8+gIdffs2pf2wCKcPtFez6vOT0UDuFHknJjMDg0fI3DnyC7jJqO8V4XpmPyarTp3JJRGhmqTHhpZInn70JMfS+RFry5+rLSOM0T+KWV8fYjs9eyCiZijlR4AiADooXm9G8JIzZCLZX2Dty83iyz7gQzSxYO7ULuTT1stvGuJwbBP4LMhLXkbxdhAmBSDiYNOnc3O+yFsO6Ps9UOQD8S4Pbr8hZ4mFjbicpO635SwpmHINYDeuewln3/GHz69LpCjmpnKPeF9ZxXcq6MR4kJUV2j/dQzqjLniNaQmrMkULdI7W1sMXRFcsz9xs1GVwVqmtMVws8HtvXMYNmosCrrgAFX2ghPz7dXCV6vML5YhfNbDAzzG6MHffrslrhMav3vtlt8Fnld4VaH6IhMkowayT1lSVvfvlKHCWwtKaTcOZrR5LZGalJOpFbVIFUOAo+LnY/25bmc3KloyLzgiTudjPsXEGPNPBIvE/5cMEvU4Lrs0N3tCke4abYDXF9f14QrwLlHSUYowDcG9zlE1wAnWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWKMBl9zaGFwZZQpdWIu",
39
+ "n": 3,
40
+ "dtype": "int64",
41
+ "_np_random": "RandomState(MT19937)",
42
+ "_shape": []
43
+ },
44
+ "n_envs": 2,
45
+ "num_timesteps": 100352,
46
+ "_total_timesteps": 100000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": 0,
49
+ "action_noise": null,
50
+ "start_time": 1640769474.6221268,
51
+ "learning_rate": 0.001,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gASVywIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxOL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvcmwvc3RhYmxlLWJhc2VsaW5lczMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxOL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvcmwvc3RhYmxlLWJhc2VsaW5lczMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
56
+ },
57
+ "_last_obs": null,
58
+ "_last_episode_starts": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gASVigAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwKFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDAgAAlHSUYi4="
61
+ },
62
+ "_last_original_obs": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gASVugAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwJLBoaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUMw/2x/P78Yib3b0X8/tq4ZvVvttj0bzGq9lPJ/P6jIpbwaZX8/gLmMPf95WT3Wkn49lHSUYi4="
65
+ },
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.0035199999999999676,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gASV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwF0AAAAAAACMAWyUS3WMAXSUR0BeJyKWLP2PdX2UKGgGR8BPAAAAAAAAaAdLP2gIR0BeKcriEQGwdX2UKGgGR8BTwAAAAAAAaAdLUGgIR0BeMZjUd7v5dX2UKGgGR8BVQAAAAAAAaAdLVmgIR0BeNOS8rZrYdX2UKGgGR8BSgAAAAAAAaAdLS2gIR0BeXAOz6ab4dX2UKGgGR8BRAAAAAAAAaAdLRWgIR0BeXn7xd6cBdX2UKGgGR8BUwAAAAAAAaAdLVGgIR0BeZsoMKCxvdX2UKGgGR8BXAAAAAAAAaAdLXWgIR0Bea1CkXUH6dX2UKGgGR8BagAAAAAAAaAdLa2gIR0Bedti2DxsmdX2UKGgGR8BUgAAAAAAAaAdLU2gIR0Bed5ZwGW2PdX2UKGgGR8BVAAAAAAAAaAdLVWgIR0Begdovi97GdX2UKGgGR8BUAAAAAAAAaAdLUWgIR0Beghjvuw5edX2UKGgGR8BVAAAAAAAAaAdLVWgIR0BejcFyJbdKdX2UKGgGR8BZQAAAAAAAaAdLZmgIR0BekFM/QjUvdX2UKGgGR8BRgAAAAAAAaAdLR2gIR0BelxA0Kqn4dX2UKGgGR8BTAAAAAAAAaAdLTWgIR0BemjcuanaWdX2UKGgGR8BRwAAAAAAAaAdLSGgIR0BeoC+cpb2UdX2UKGgGR8BRgAAAAAAAaAdLR2gIR0Beo3jIaLn+dX2UKGgGR8BXAAAAAAAAaAdLXWgIR0Beq/qkdmxudX2UKGgGR8BWQAAAAAAAaAdLWmgIR0BermsNlRP5dX2UKGgGR8BUAAAAAAAAaAdLUWgIR0BetV9Sde6adX2UKGgGR8BRQAAAAAAAaAdLRmgIR0BetpHVf/m1dX2UKGgGR8BPgAAAAAAAaAdLQGgIR0BevnbM5fdAdX2UKGgGR8BfQAAAAAAAaAdLfmgIR0BeyXeWOZLJdX2UKGgGR8BVAAAAAAAAaAdLVWgIR0BeyzvVmSQpdX2UKGgGR8BUAAAAAAAAaAdLUWgIR0Be1CLMs6JZdX2UKGgGR8BRgAAAAAAAaAdLR2gIR0Be1JO32EkCdX2UKGgGR8BSgAAAAAAAaAdLS2gIR0Be3ZjQRf4RdX2UKGgGR8BRgAAAAAAAaAdLR2gIR0Be3YCdSVGDdX2UKGgGR8BSQAAAAAAAaAdLSmgIR0BfEJhnanJldX2UKGgGR8BTgAAAAAAAaAdLT2gIR0BfEViay8jBdX2UKGgGR8BTAAAAAAAAaAdLTWgIR0BfHFYZEUj+dX2UKGgGR8BUwAAAAAAAaAdLVGgIR0BfHLwOOKfndX2UKGgGR8BRwAAAAAAAaAdLSGgIR0BfJqlk6LfldX2UKGgGR8BVgAAAAAAAaAdLV2gIR0BfKFXV9Wp7dX2UKGgGR8BTQAAAAAAAaAdLTmgIR0BfMPtpmEoOdX2UKGgGR8BVAAAAAAAAaAdLVWgIR0BfM2M85jpcdX2UKGgGR8BWwAAAAAAAaAdLXGgIR0BfPFbFCLMtdX2UKGgGR8BYgAAAAAAAaAdLY2gIR0BfP7iEQGwBdX2UKGgGR8BXgAAAAAAAaAdLX2gIR0BfSVstTUAldX2UKGgGR8BXgAAAAAAAaAdLX2gIR0BfTq4hEBsAdX2UKGgGR8BVAAAAAAAAaAdLVWgIR0BfWB4IKMNudX2UKGgGR8BSQAAAAAAAaAdLSmgIR0BfWf0RODaodX2UKGgGR8BUgAAAAAAAaAdLU2gIR0BfYmeDnNgSdX2UKGgGR8BXQAAAAAAAaAdLXmgIR0BfZbOeJ53UdX2UKGgGR8BQwAAAAAAAaAdLRGgIR0BfayKrJbMYdX2UKGgGR8BWAAAAAAAAaAdLWWgIR0Bfcbpu/DcedX2UKGgGR8BSQAAAAAAAaAdLSmgIR0BfdVvQ4S6EdX2UKGgGR8BTQAAAAAAAaAdLTmgIR0Bfe66OHWSVdX2UKGgGR8BWgAAAAAAAaAdLW2gIR0BfgLiVB2OidX2UKGgGR8BSQAAAAAAAaAdLSmgIR0BfhNWZJCjUdX2UKGgGR8BUwAAAAAAAaAdLVGgIR0Bfitv863iJdX2UKGgGR8BUQAAAAAAAaAdLUmgIR0BfjswYcebNdX2UKGgGR8BUQAAAAAAAaAdLUmgIR0BfuGY8dPtVdX2UKGgGR8BTQAAAAAAAaAdLTmgIR0Bfu+yquKXOdX2UKGgGR8BSQAAAAAAAaAdLSmgIR0BfwVklNUOvdX2UKGgGR8BTQAAAAAAAaAdLTmgIR0BfxSo0hvBKdX2UKGgGR8BWAAAAAAAAaAdLWWgIR0BfzeMQ2/BWdX2UKGgGR8BQAAAAAAAAaAdLQWgIR0Bfztr9ETg3dX2UKGgGR8BUAAAAAAAAaAdLUWgIR0Bf18dLg4wRdX2UKGgGR8BVQAAAAAAAaAdLVmgIR0Bf2VS0jTrndX2UKGgGR8BTgAAAAAAAaAdLT2gIR0Bf4cjmjj7zdX2UKGgGR8BRgAAAAAAAaAdLR2gIR0Bf4nxFy7wsdX2UKGgGR8BRgAAAAAAAaAdLR2gIR0Bf753cHnlodX2UKGgGR8BTgAAAAAAAaAdLT2gIR0Bf8XSncclxdX2UKGgGR8BWAAAAAAAAaAdLWWgIR0Bf/fAsTWXkdX2UKGgGR8BUgAAAAAAAaAdLU2gIR0Bf/86V+qiodX2UKGgGR8BRwAAAAAAAaAdLSGgIR0BgBesPrfLtdX2UKGgGR8BVAAAAAAAAaAdLVWgIR0BgBlUOuq3mdX2UKGgGR8BRwAAAAAAAaAdLSGgIR0BgCvDcdo38dX2UKGgGR8BVAAAAAAAAaAdLVWgIR0BgDCN4qwyJdX2UKGgGR8BVAAAAAAAAaAdLVWgIR0BgEFS619fDdX2UKGgGR8BTgAAAAAAAaAdLT2gIR0BgFTK7qY7adX2UKGgGR8BPgAAAAAAAaAdLQGgIR0BgGW9Htnf3dX2UKGgGR8BrYAAAAAAAaAdL3GgIR0BgGjLt/nW8dX2UKGgGR8BPAAAAAAAAaAdLP2gIR0BgHj8gpz91dX2UKGgGR8BTwAAAAAAAaAdLUGgIR0BgHqUA1ejVdX2UKGgGR8BTQAAAAAAAaAdLTmgIR0BgOcnRb8m8dX2UKGgGR8BRwAAAAAAAaAdLSGgIR0BgQZm7J4jbdX2UKGgGR8BlYAAAAAAAaAdLrGgIR0BgRKB/ZuhsdX2UKGgGR8BVAAAAAAAAaAdLVWgIR0BgSsS5AhStdX2UKGgGR8BTAAAAAAAAaAdLTWgIR0BgTUurZJ05dX2UKGgGR8BYgAAAAAAAaAdLY2gIR0BgVTb+Lm6odX2UKGgGR8BTgAAAAAAAaAdLT2gIR0BgVU/6fra/dX2UKGgGR8BRwAAAAAAAaAdLSGgIR0BgXSYRdyDJdX2UKGgGR8BSQAAAAAAAaAdLSmgIR0BgXVPBSDRMdX2UKGgGR8BRAAAAAAAAaAdLRWgIR0BgZPtMPBi1dX2UKGgGR8BTQAAAAAAAaAdLTmgIR0BgZdXvH93sdX2UKGgGR8BTgAAAAAAAaAdLT2gIR0Bga4rvsqrjdX2UKGgGR8BVAAAAAAAAaAdLVWgIR0BgbPFDOTq0dX2UKGgGR8BRQAAAAAAAaAdLRmgIR0BgcoLXtjTbdX2UKGgGR8BVgAAAAAAAaAdLV2gIR0BgdM5MlC1JdX2UKGgGR8BWwAAAAAAAaAdLXGgIR0BgeQ5BC2MLdX2UKGgGR8BVgAAAAAAAaAdLV2gIR0Bgeunfl6qsdX2UKGgGR8BUAAAAAAAAaAdLUWgIR0Bgfv5ckdFOdX2UKGgGR8BRgAAAAAAAaAdLR2gIR0BghYkRjBl+dX2UKGgGR8Bj4AAAAAAAaAdLoGgIR0Bgh/7m+0w8dX2UKGgGR8BRgAAAAAAAaAdLR2gIR0BgpOG7BfrsdX2UKGgGR8BRQAAAAAAAaAdLRmgIR0Bgp2ktVaOhdX2UKGgGR8BVQAAAAAAAaAdLVmgIR0BgrbuUliSadWUu"
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 49,
79
+ "n_steps": 1024,
80
+ "gamma": 0.99,
81
+ "gae_lambda": 0.95,
82
+ "ent_coef": 0.0,
83
+ "vf_coef": 0.0,
84
+ "max_grad_norm": 0.0,
85
+ "normalize_advantage": true,
86
+ "batch_size": 128,
87
+ "cg_max_steps": 15,
88
+ "cg_damping": 0.1,
89
+ "line_search_shrinking_factor": 0.8,
90
+ "line_search_max_iter": 10,
91
+ "target_kl": 0.01,
92
+ "n_critic_updates": 10,
93
+ "sub_sampling_factor": 1
94
+ }
trpo-Acrobot-v1/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:60ed48b0b7f1edd7d28b4f89b98db87bec8501e41e6f5ec52da0fa2d3726b6a5
3
+ size 40705
trpo-Acrobot-v1/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6965379243845f9aa2ad884474ec0ca24d1575b081c938ee871d450c9ef14211
3
+ size 41921
trpo-Acrobot-v1/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
trpo-Acrobot-v1/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.13.0-44-generic-x86_64-with-debian-bullseye-sid #49~20.04.1-Ubuntu SMP Wed May 18 18:44:28 UTC 2022
2
+ Python: 3.7.10
3
+ Stable-Baselines3: 1.5.1a8
4
+ PyTorch: 1.11.0
5
+ GPU Enabled: True
6
+ Numpy: 1.21.2
7
+ Gym: 0.21.0
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:76e86fd72ae428e1d8a85e71617153a41635412d33f2f6202e518a8519f49d43
3
+ size 4371