scarface247
commited on
Commit
•
87d1a30
1
Parent(s):
a9a43e0
first_RL_model
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 269.52 +/- 16.79
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7cc231f931c0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7cc231f93250>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7cc231f932e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7cc231f93370>", "_build": "<function ActorCriticPolicy._build at 0x7cc231f93400>", "forward": "<function ActorCriticPolicy.forward at 0x7cc231f93490>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7cc231f93520>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7cc231f935b0>", "_predict": "<function ActorCriticPolicy._predict at 0x7cc231f93640>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7cc231f936d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7cc231f93760>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7cc231f937f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7cc231f8dbc0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1710349282607586953, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACa0+72/KPY+a+WbPZNYpr5PEYO89SYUPQAAAAAAAAAAc1vCPWAdAz+o9nc6nYS4vkDPUD3W8vG6AAAAAAAAAAAG9Ck+iCObP22HoT5T3hy/t6pWPjJegz0AAAAAAAAAAMbDEb4lCjo+RW5ZPiU7CL6Y2C495WQ5PQAAAAAAAAAADba8PQkUpD8BT0U+DUMFv3GjzD0zXu49AAAAAAAAAABTMR++vDVdPSb4KT5thxe+EIkXvOl+j70AAAAAAAAAAHMSqT15ir4+R0kcvVEXkL4VeKQ70dMMvQAAAAAAAAAAmuoivgNcYLxhcys74cBdOe7Xwz3KX2i6AACAPwAAgD+TFTY+7gG8PtIQF72xZKy+VVkLPQC4BL0AAAAAAAAAABOHJb5cD1e8LSBaOs4J9Tig9MY9gK/BuQAAgD8AAIA/GmEIPXsKn7oozc24ka3Bs/mM7zkgIO03AACAPwAAgD8qx9U+F+BzP3sKOj6N/Pe+JBSiPv+4Ob4AAAAAAAAAAOb0er1EY5k+mlJAPUcelL4g5ee8L9aePAAAAAAAAAAATeEdvoVRq7vgwJC6VdDWt9Jw9zxE+qk5AACAPwAAgD9AsSI+0r7zPFoNMr1tpi6+x3h8u6IBGLwAAAAAAAAAAGbpQL5fozE/QrDKvVNq7b7EPw6+kl9NPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVBQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGBqixeLNwCMAWyUTegDjAF0lEdAl2kznvDxb3V9lChoBkdAcpZ0Q9RrJ2gHS+1oCEdAl2mO32EkB3V9lChoBkdAcYB2NedCmmgHS/loCEdAl2nSH2ys0nV9lChoBkdAcAELwWnCO2gHS+VoCEdAl2n/V7Qb/HV9lChoBkdAckx+Yc/+sGgHTQkBaAhHQJdq53Sro4d1fZQoaAZHQHCuacI7eVNoB0v3aAhHQJdrcfSx7iR1fZQoaAZHQHEv/Z7HAARoB0vuaAhHQJduUCq6vq11fZQoaAZHQHHbboSteUpoB0vuaAhHQJdutQk5ZKZ1fZQoaAZHQHHN0waisXBoB00BAWgIR0CXcDtq59VndX2UKGgGR0BwPy+Yc/+saAdL4GgIR0CXcSIIWxhVdX2UKGgGR0BbG4dQwblzaAdN6ANoCEdAl3G99ph4MXV9lChoBkdAcLDU5dWyT2gHS+ZoCEdAl3HKrR0EHXV9lChoBkdAcfrj2i+L32gHTRoBaAhHQJdyC/VRUFV1fZQoaAZHQG2pt29tdiVoB0vnaAhHQJdyHhJiAlR1fZQoaAZHQG8NbeMyaeBoB0vzaAhHQJdyvbah6B11fZQoaAZHQG3if0EovzxoB0vfaAhHQJdzAv+OwPl1fZQoaAZHQHEihdpqREFoB0vUaAhHQJdzNikO7QN1fZQoaAZHQGHLVZ1V5rxoB03oA2gIR0CXdh/+bVjJdX2UKGgGR0BvwLIzWPLgaAdL5mgIR0CXdokUbkwOdX2UKGgGR0BwimJ40Mw2aAdL52gIR0CXdulP8AJcdX2UKGgGR0BcTVuJk5IZaAdN6ANoCEdAl3c2K64DtHV9lChoBkdAc5fKBNEgGWgHS+JoCEdAl3gIT4+KTHV9lChoBkdAbwkrXlKbrmgHS95oCEdAl3kr/Khcq3V9lChoBkdAcVKGX5WRzWgHS+JoCEdAl3lX5BTn73V9lChoBkdAbpzlp48lomgHS99oCEdAl3mJiZv1lHV9lChoBkdAcTA/keZG8WgHTQEBaAhHQJd5z7m+0w91fZQoaAZHQHIfpKnNxERoB0viaAhHQJd6LTNMXad1fZQoaAZHQHBqucx0uDloB00DAWgIR0CXepVvuPV/dX2UKGgGR0BwwW6UaAFxaAdL82gIR0CXeySZjQRgdX2UKGgGR0BwluNR3u/laAdNHQFoCEdAl3w0/B3zMHV9lChoBkdAbbxpUxVQymgHS+JoCEdAl31JIH1OCXV9lChoBkdAcWVEuxrzoWgHS+VoCEdAl32/u1F6RnV9lChoBkdAZBSC5mRNh2gHTegDaAhHQJd+xVIZqEh1fZQoaAZHQHEyeEM9bHJoB0vYaAhHQJd+0CFK02N1fZQoaAZHQHGFp/XoTwloB00AAWgIR0CXfztCzC1rdX2UKGgGR0BuIO3Ytg8baAdL6WgIR0CXgLoWYWtVdX2UKGgGR0BxKxaGHpKSaAdL9GgIR0CXgPE4vN/wdX2UKGgGR0BxubUH6dlNaAdL/mgIR0CXgS/X5FgEdX2UKGgGR0BxarbmEGqxaAdL7WgIR0CXgdvM8ox6dX2UKGgGR0BwGo1pCa7VaAdL7WgIR0CXgm6unuRcdX2UKGgGR0BxaLlnyup0aAdNZwFoCEdAl4K9L127nXV9lChoBkdAcDkoCMglnmgHTRABaAhHQJeC3s8gZCR1fZQoaAZHQGz8wY1pCa9oB0v/aAhHQJeD/MW43FV1fZQoaAZHQHBIbp3X7LtoB0v1aAhHQJeE/Omixml1fZQoaAZHQGHNCjUNKAdoB03oA2gIR0CXhXCsOoYOdX2UKGgGR0Bg4BtJnQIEaAdN6ANoCEdAl4a0QK8cuXV9lChoBkdAcjzTRplBhWgHTRUBaAhHQJeHs3BHkLh1fZQoaAZHQHAZXWFvhqFoB0vxaAhHQJeIJLvkRz11fZQoaAZHQHDMmETQE6loB0v4aAhHQJeJEh0Qsf91fZQoaAZHQHMMBiPQv6FoB00RAWgIR0CXiWYoRZlndX2UKGgGR0Bwc2fVZs9CaAdL62gIR0CXigmnfl6rdX2UKGgGR0BxfDBsQ/X5aAdL92gIR0CXin8ZUDMedX2UKGgGR0Bw7iPQv6CUaAdNAwFoCEdAl4r1U6xPf3V9lChoBkdAbC4a9bor4GgHS+JoCEdAl4sA5R0lq3V9lChoBkdAcfG79hqj8GgHS/FoCEdAl4s6Zc9nsnV9lChoBkdAcLRzmwJPZmgHS/doCEdAl4unq7iAD3V9lChoBkdAcz2dMCcPOWgHTSUBaAhHQJeMPCxeLNx1fZQoaAZHQHDOGjTKDChoB0vdaAhHQJeMVU70Wdp1fZQoaAZHQG+VB60IC2doB0vsaAhHQJeN2CVbA1x1fZQoaAZHQHAJyTpxFRZoB0vfaAhHQJeOd6MR6GB1fZQoaAZHQHFsLuDzyz5oB00xAWgIR0CXju/yXlbNdX2UKGgGR0Bwt7cZccENaAdL/GgIR0CXjwO3UhFFdX2UKGgGR0BxZPSro4dZaAdL2GgIR0CXj/o5xR2sdX2UKGgGR0Bw5bVc2R7raAdNDQFoCEdAl5B/qC6H03V9lChoBkdAbaKYdhiLEWgHS9xoCEdAl5CiQ5myxHV9lChoBkdAcas4y44IbGgHS/FoCEdAl5HejqOcUnV9lChoBkdAb3FGG21D0GgHS+poCEdAl5Hr2g398HV9lChoBkdAcQ8SNwR5DGgHTQABaAhHQJeSSpR4yGl1fZQoaAZHQHJhgXhwVCZoB01EAWgIR0CXkpTH80k4dX2UKGgGR0Bw3VI1+AmRaAdL2WgIR0CXkpduYQardX2UKGgGR0ByMWI1tO2zaAdL6GgIR0CXkxWwu/UOdX2UKGgGR0BwslJEpiI+aAdNPgFoCEdAl5TCkO7QLXV9lChoBkdAcLQ+5OJtSGgHS9doCEdAl5Vf6sQumXV9lChoBkdAbqbDx9XtB2gHS/poCEdAl5XcOkLx7XV9lChoBkdAcaynmaH9FWgHS+ZoCEdAl5bNl/Yra3V9lChoBkdAbc1wYtQKr2gHS/BoCEdAl5ebOZ9d/3V9lChoBkdAcmc+9Jz1b2gHTQ0BaAhHQJeYsaaTfSB1fZQoaAZHQHCTk87p3X9oB0viaAhHQJeZA6gdwNt1fZQoaAZHQHJSHUMG5c1oB0v1aAhHQJeZN8BuGbl1fZQoaAZHQHAQosd1dPdoB0vgaAhHQJeZR2St/4J1fZQoaAZHQHIdomXw9aFoB01ZAWgIR0CXmWGo73fydX2UKGgGR0Bv4mBg/keZaAdL/mgIR0CXmY6yjYZmdX2UKGgGR0BxHQx7AtWdaAdL/GgIR0CXmiOx0MgEdX2UKGgGR0BwEcinpB5YaAdNAgFoCEdAl5rYFaB7NXV9lChoBkdAcHY/hVENOWgHS+xoCEdAl5yrAtWdVnV9lChoBkdAcOlMKkVN6GgHS99oCEdAl5zEqpcX33V9lChoBkdAY74UIsyzomgHTegDaAhHQJedsmY0EYB1fZQoaAZHQHHwA6IWP91oB008AWgIR0CXnmu1ndwedX2UKGgGR0Bvj8Kmbb1zaAdNAgFoCEdAl5+wTZg5R3V9lChoBkdAcUPkwvg3tWgHTR8BaAhHQJefxaiblRx1fZQoaAZHQG//sDGLk0doB0vraAhHQJeg5p+MIeJ1fZQoaAZHQHE7slTm4iJoB00PAWgIR0CXoTdN34bkdX2UKGgGR0BwfaRZEDyOaAdL6mgIR0CXoXwj+rEMdX2UKGgGR0ByHmjrRjSYaAdNBwFoCEdAl6GXsXzlLnV9lChoBkdAcjC3pfQa72gHTREBaAhHQJehyaa1Cw91fZQoaAZHQG+9ldLQHA1oB0v2aAhHQJeifeYUnG91fZQoaAZHQHDsG4iHIp9oB001AWgIR0CXorr+YMOPdX2UKGgGR0BmIBjnV5KOaAdN6ANoCEdAl6L2iHqNZXV9lChoBkdAcauFJQLuyGgHS95oCEdAl6OABPsRhHV9lChoBkdAb0ZkauOjqWgHS+xoCEdAl6PHyqdYn3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:825f5477a87cd378e9522b4fe7961a903bdf9fc21a5aed0f04376cec447f4e3c
|
3 |
+
size 148003
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7cc231f931c0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7cc231f93250>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7cc231f932e0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7cc231f93370>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7cc231f93400>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7cc231f93490>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7cc231f93520>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7cc231f935b0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7cc231f93640>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7cc231f936d0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7cc231f93760>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7cc231f937f0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7cc231f8dbc0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1710349282607586953,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACa0+72/KPY+a+WbPZNYpr5PEYO89SYUPQAAAAAAAAAAc1vCPWAdAz+o9nc6nYS4vkDPUD3W8vG6AAAAAAAAAAAG9Ck+iCObP22HoT5T3hy/t6pWPjJegz0AAAAAAAAAAMbDEb4lCjo+RW5ZPiU7CL6Y2C495WQ5PQAAAAAAAAAADba8PQkUpD8BT0U+DUMFv3GjzD0zXu49AAAAAAAAAABTMR++vDVdPSb4KT5thxe+EIkXvOl+j70AAAAAAAAAAHMSqT15ir4+R0kcvVEXkL4VeKQ70dMMvQAAAAAAAAAAmuoivgNcYLxhcys74cBdOe7Xwz3KX2i6AACAPwAAgD+TFTY+7gG8PtIQF72xZKy+VVkLPQC4BL0AAAAAAAAAABOHJb5cD1e8LSBaOs4J9Tig9MY9gK/BuQAAgD8AAIA/GmEIPXsKn7oozc24ka3Bs/mM7zkgIO03AACAPwAAgD8qx9U+F+BzP3sKOj6N/Pe+JBSiPv+4Ob4AAAAAAAAAAOb0er1EY5k+mlJAPUcelL4g5ee8L9aePAAAAAAAAAAATeEdvoVRq7vgwJC6VdDWt9Jw9zxE+qk5AACAPwAAgD9AsSI+0r7zPFoNMr1tpi6+x3h8u6IBGLwAAAAAAAAAAGbpQL5fozE/QrDKvVNq7b7EPw6+kl9NPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVBQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGBqixeLNwCMAWyUTegDjAF0lEdAl2kznvDxb3V9lChoBkdAcpZ0Q9RrJ2gHS+1oCEdAl2mO32EkB3V9lChoBkdAcYB2NedCmmgHS/loCEdAl2nSH2ys0nV9lChoBkdAcAELwWnCO2gHS+VoCEdAl2n/V7Qb/HV9lChoBkdAckx+Yc/+sGgHTQkBaAhHQJdq53Sro4d1fZQoaAZHQHCuacI7eVNoB0v3aAhHQJdrcfSx7iR1fZQoaAZHQHEv/Z7HAARoB0vuaAhHQJduUCq6vq11fZQoaAZHQHHbboSteUpoB0vuaAhHQJdutQk5ZKZ1fZQoaAZHQHHN0waisXBoB00BAWgIR0CXcDtq59VndX2UKGgGR0BwPy+Yc/+saAdL4GgIR0CXcSIIWxhVdX2UKGgGR0BbG4dQwblzaAdN6ANoCEdAl3G99ph4MXV9lChoBkdAcLDU5dWyT2gHS+ZoCEdAl3HKrR0EHXV9lChoBkdAcfrj2i+L32gHTRoBaAhHQJdyC/VRUFV1fZQoaAZHQG2pt29tdiVoB0vnaAhHQJdyHhJiAlR1fZQoaAZHQG8NbeMyaeBoB0vzaAhHQJdyvbah6B11fZQoaAZHQG3if0EovzxoB0vfaAhHQJdzAv+OwPl1fZQoaAZHQHEihdpqREFoB0vUaAhHQJdzNikO7QN1fZQoaAZHQGHLVZ1V5rxoB03oA2gIR0CXdh/+bVjJdX2UKGgGR0BvwLIzWPLgaAdL5mgIR0CXdokUbkwOdX2UKGgGR0BwimJ40Mw2aAdL52gIR0CXdulP8AJcdX2UKGgGR0BcTVuJk5IZaAdN6ANoCEdAl3c2K64DtHV9lChoBkdAc5fKBNEgGWgHS+JoCEdAl3gIT4+KTHV9lChoBkdAbwkrXlKbrmgHS95oCEdAl3kr/Khcq3V9lChoBkdAcVKGX5WRzWgHS+JoCEdAl3lX5BTn73V9lChoBkdAbpzlp48lomgHS99oCEdAl3mJiZv1lHV9lChoBkdAcTA/keZG8WgHTQEBaAhHQJd5z7m+0w91fZQoaAZHQHIfpKnNxERoB0viaAhHQJd6LTNMXad1fZQoaAZHQHBqucx0uDloB00DAWgIR0CXepVvuPV/dX2UKGgGR0BwwW6UaAFxaAdL82gIR0CXeySZjQRgdX2UKGgGR0BwluNR3u/laAdNHQFoCEdAl3w0/B3zMHV9lChoBkdAbbxpUxVQymgHS+JoCEdAl31JIH1OCXV9lChoBkdAcWVEuxrzoWgHS+VoCEdAl32/u1F6RnV9lChoBkdAZBSC5mRNh2gHTegDaAhHQJd+xVIZqEh1fZQoaAZHQHEyeEM9bHJoB0vYaAhHQJd+0CFK02N1fZQoaAZHQHGFp/XoTwloB00AAWgIR0CXfztCzC1rdX2UKGgGR0BuIO3Ytg8baAdL6WgIR0CXgLoWYWtVdX2UKGgGR0BxKxaGHpKSaAdL9GgIR0CXgPE4vN/wdX2UKGgGR0BxubUH6dlNaAdL/mgIR0CXgS/X5FgEdX2UKGgGR0BxarbmEGqxaAdL7WgIR0CXgdvM8ox6dX2UKGgGR0BwGo1pCa7VaAdL7WgIR0CXgm6unuRcdX2UKGgGR0BxaLlnyup0aAdNZwFoCEdAl4K9L127nXV9lChoBkdAcDkoCMglnmgHTRABaAhHQJeC3s8gZCR1fZQoaAZHQGz8wY1pCa9oB0v/aAhHQJeD/MW43FV1fZQoaAZHQHBIbp3X7LtoB0v1aAhHQJeE/Omixml1fZQoaAZHQGHNCjUNKAdoB03oA2gIR0CXhXCsOoYOdX2UKGgGR0Bg4BtJnQIEaAdN6ANoCEdAl4a0QK8cuXV9lChoBkdAcjzTRplBhWgHTRUBaAhHQJeHs3BHkLh1fZQoaAZHQHAZXWFvhqFoB0vxaAhHQJeIJLvkRz11fZQoaAZHQHDMmETQE6loB0v4aAhHQJeJEh0Qsf91fZQoaAZHQHMMBiPQv6FoB00RAWgIR0CXiWYoRZlndX2UKGgGR0Bwc2fVZs9CaAdL62gIR0CXigmnfl6rdX2UKGgGR0BxfDBsQ/X5aAdL92gIR0CXin8ZUDMedX2UKGgGR0Bw7iPQv6CUaAdNAwFoCEdAl4r1U6xPf3V9lChoBkdAbC4a9bor4GgHS+JoCEdAl4sA5R0lq3V9lChoBkdAcfG79hqj8GgHS/FoCEdAl4s6Zc9nsnV9lChoBkdAcLRzmwJPZmgHS/doCEdAl4unq7iAD3V9lChoBkdAcz2dMCcPOWgHTSUBaAhHQJeMPCxeLNx1fZQoaAZHQHDOGjTKDChoB0vdaAhHQJeMVU70Wdp1fZQoaAZHQG+VB60IC2doB0vsaAhHQJeN2CVbA1x1fZQoaAZHQHAJyTpxFRZoB0vfaAhHQJeOd6MR6GB1fZQoaAZHQHFsLuDzyz5oB00xAWgIR0CXju/yXlbNdX2UKGgGR0Bwt7cZccENaAdL/GgIR0CXjwO3UhFFdX2UKGgGR0BxZPSro4dZaAdL2GgIR0CXj/o5xR2sdX2UKGgGR0Bw5bVc2R7raAdNDQFoCEdAl5B/qC6H03V9lChoBkdAbaKYdhiLEWgHS9xoCEdAl5CiQ5myxHV9lChoBkdAcas4y44IbGgHS/FoCEdAl5HejqOcUnV9lChoBkdAb3FGG21D0GgHS+poCEdAl5Hr2g398HV9lChoBkdAcQ8SNwR5DGgHTQABaAhHQJeSSpR4yGl1fZQoaAZHQHJhgXhwVCZoB01EAWgIR0CXkpTH80k4dX2UKGgGR0Bw3VI1+AmRaAdL2WgIR0CXkpduYQardX2UKGgGR0ByMWI1tO2zaAdL6GgIR0CXkxWwu/UOdX2UKGgGR0BwslJEpiI+aAdNPgFoCEdAl5TCkO7QLXV9lChoBkdAcLQ+5OJtSGgHS9doCEdAl5Vf6sQumXV9lChoBkdAbqbDx9XtB2gHS/poCEdAl5XcOkLx7XV9lChoBkdAcaynmaH9FWgHS+ZoCEdAl5bNl/Yra3V9lChoBkdAbc1wYtQKr2gHS/BoCEdAl5ebOZ9d/3V9lChoBkdAcmc+9Jz1b2gHTQ0BaAhHQJeYsaaTfSB1fZQoaAZHQHCTk87p3X9oB0viaAhHQJeZA6gdwNt1fZQoaAZHQHJSHUMG5c1oB0v1aAhHQJeZN8BuGbl1fZQoaAZHQHAQosd1dPdoB0vgaAhHQJeZR2St/4J1fZQoaAZHQHIdomXw9aFoB01ZAWgIR0CXmWGo73fydX2UKGgGR0Bv4mBg/keZaAdL/mgIR0CXmY6yjYZmdX2UKGgGR0BxHQx7AtWdaAdL/GgIR0CXmiOx0MgEdX2UKGgGR0BwEcinpB5YaAdNAgFoCEdAl5rYFaB7NXV9lChoBkdAcHY/hVENOWgHS+xoCEdAl5yrAtWdVnV9lChoBkdAcOlMKkVN6GgHS99oCEdAl5zEqpcX33V9lChoBkdAY74UIsyzomgHTegDaAhHQJedsmY0EYB1fZQoaAZHQHHwA6IWP91oB008AWgIR0CXnmu1ndwedX2UKGgGR0Bvj8Kmbb1zaAdNAgFoCEdAl5+wTZg5R3V9lChoBkdAcUPkwvg3tWgHTR8BaAhHQJefxaiblRx1fZQoaAZHQG//sDGLk0doB0vraAhHQJeg5p+MIeJ1fZQoaAZHQHE7slTm4iJoB00PAWgIR0CXoTdN34bkdX2UKGgGR0BwfaRZEDyOaAdL6mgIR0CXoXwj+rEMdX2UKGgGR0ByHmjrRjSYaAdNBwFoCEdAl6GXsXzlLnV9lChoBkdAcjC3pfQa72gHTREBaAhHQJehyaa1Cw91fZQoaAZHQG+9ldLQHA1oB0v2aAhHQJeifeYUnG91fZQoaAZHQHDsG4iHIp9oB001AWgIR0CXorr+YMOPdX2UKGgGR0BmIBjnV5KOaAdN6ANoCEdAl6L2iHqNZXV9lChoBkdAcauFJQLuyGgHS95oCEdAl6OABPsRhHV9lChoBkdAb0ZkauOjqWgHS+xoCEdAl6PHyqdYn3VlLg=="
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 310,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 2048,
|
81 |
+
"gamma": 0.99,
|
82 |
+
"gae_lambda": 0.95,
|
83 |
+
"ent_coef": 0.0,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 10,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f908213ce65508543f2ec529b154eb385a1005bcb6f8427e7adef4215175369c
|
3 |
+
size 88362
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f73ec007da68a8f78ed69e26c90f5e8fe1a2b5c2e9396eceb6ff7855d798ec4a
|
3 |
+
size 43762
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.2.1+cu121
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.25.2
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (182 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 269.5175844000001, "std_reward": 16.791135767571756, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-03-13T17:40:45.609990"}
|