File size: 41,983 Bytes
7e91cb7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 |
---
library_name: sklearn
tags:
- sklearn
- skops
- text-classification
---
# Model description
This is a neural net classifier and distilbert model chained with sklearn Pipeline trained on 20 news groups dataset.
## Intended uses & limitations
This model is trained for a tutorial and is not ready to be used in production.
## Training Procedure
### Hyperparameters
The model is trained with below hyperparameters.
<details>
<summary> Click to expand </summary>
| Hyperparameter | Value |
|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| memory | |
| steps | [('tokenizer', HuggingfacePretrainedTokenizer(tokenizer='distilbert-base-uncased')), ('net', <class 'skorch.classifier.NeuralNetClassifier'>[initialized](
module_=BertModule(
(bert): DistilBertForSequenceClassification(
(distilbert): DistilBertModel(
(embeddings): Embeddings(
(word_embeddings): Embedding(30522, 768, padding_idx=0)
(position_embeddings): Embedding(512, 768)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(transformer): Transformer(
(layer): ModuleList(
(0): TransformerBlock(
(attention): MultiHeadSelfAttention(
(dropout): Dropout(p=0.1, inplace=False)
(q_lin): Linear(in_features=768, out_features=768, bias=True)
(k_lin): Linear(in_features=768, out_features=768, bias=True)
(v_lin): Linear(in_features=768, out_features=768, bias=True)
(out_lin): Linear(in_features=768, out_features=768, bias=True)
)
(sa_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(ffn): FFN(
(dropout): Dropout(p=0.1, inplace=False)
(lin1): Linear(in_features=768, out_features=3072, bias=True)
(lin2): Linear(in_features=3072, out_features=768, bias=True)
(activation): GELUActivation()
)
(output_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
)
(1): TransformerBlock(
(attention): MultiHeadSelfAttention(
(dropout): Dropout(p=0.1, inplace=False)
(q_lin): Linear(in_features=768, out_features=768, bias=True)
(k_lin): Linear(in_features=768, out_features=768, bias=True)
(v_lin): Linear(in_features=768, out_features=768, bias=True)
(out_lin): Linear(in_features=768, out_features=768, bias=True)
)
(sa_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(ffn): FFN(
(dropout): Dropout(p=0.1, inplace=False)
(lin1): Linear(in_features=768, out_features=3072, bias=True)
(lin2): Linear(in_features=3072, out_features=768, bias=True)
(activation): GELUActivation()
)
(output_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
)
(2): TransformerBlock(
(attention): MultiHeadSelfAttention(
(dropout): Dropout(p=0.1, inplace=False)
(q_lin): Linear(in_features=768, out_features=768, bias=True)
(k_lin): Linear(in_features=768, out_features=768, bias=True)
(v_lin): Linear(in_features=768, out_features=768, bias=True)
(out_lin): Linear(in_features=768, out_features=768, bias=True)
)
(sa_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(ffn): FFN(
(dropout): Dropout(p=0.1, inplace=False)
(lin1): Linear(in_features=768, out_features=3072, bias=True)
(lin2): Linear(in_features=3072, out_features=768, bias=True)
(activation): GELUActivation()
)
(output_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
)
(3): TransformerBlock(
(attention): MultiHeadSelfAttention(
(dropout): Dropout(p=0.1, inplace=False)
(q_lin): Linear(in_features=768, out_features=768, bias=True)
(k_lin): Linear(in_features=768, out_features=768, bias=True)
(v_lin): Linear(in_features=768, out_features=768, bias=True)
(out_lin): Linear(in_features=768, out_features=768, bias=True)
)
(sa_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(ffn): FFN(
(dropout): Dropout(p=0.1, inplace=False)
(lin1): Linear(in_features=768, out_features=3072, bias=True)
(lin2): Linear(in_features=3072, out_features=768, bias=True)
(activation): GELUActivation()
)
(output_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
)
(4): TransformerBlock(
(attention): MultiHeadSelfAttention(
(dropout): Dropout(p=0.1, inplace=False)
(q_lin): Linear(in_features=768, out_features=768, bias=True)
(k_lin): Linear(in_features=768, out_features=768, bias=True)
(v_lin): Linear(in_features=768, out_features=768, bias=True)
(out_lin): Linear(in_features=768, out_features=768, bias=True)
)
(sa_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(ffn): FFN(
(dropout): Dropout(p=0.1, inplace=False)
(lin1): Linear(in_features=768, out_features=3072, bias=True)
(lin2): Linear(in_features=3072, out_features=768, bias=True)
(activation): GELUActivation()
)
(output_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
)
(5): TransformerBlock(
(attention): MultiHeadSelfAttention(
(dropout): Dropout(p=0.1, inplace=False)
(q_lin): Linear(in_features=768, out_features=768, bias=True)
(k_lin): Linear(in_features=768, out_features=768, bias=True)
(v_lin): Linear(in_features=768, out_features=768, bias=True)
(out_lin): Linear(in_features=768, out_features=768, bias=True)
)
(sa_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(ffn): FFN(
(dropout): Dropout(p=0.1, inplace=False)
(lin1): Linear(in_features=768, out_features=3072, bias=True)
(lin2): Linear(in_features=3072, out_features=768, bias=True)
(activation): GELUActivation()
)
(output_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
)
)
)
)
(pre_classifier): Linear(in_features=768, out_features=768, bias=True)
(classifier): Linear(in_features=768, out_features=20, bias=True)
(dropout): Dropout(p=0.2, inplace=False)
)
),
))] |
| verbose | False |
| tokenizer | HuggingfacePretrainedTokenizer(tokenizer='distilbert-base-uncased') |
| net | <class 'skorch.classifier.NeuralNetClassifier'>[initialized](
module_=BertModule(
(bert): DistilBertForSequenceClassification(
(distilbert): DistilBertModel(
(embeddings): Embeddings(
(word_embeddings): Embedding(30522, 768, padding_idx=0)
(position_embeddings): Embedding(512, 768)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(transformer): Transformer(
(layer): ModuleList(
(0): TransformerBlock(
(attention): MultiHeadSelfAttention(
(dropout): Dropout(p=0.1, inplace=False)
(q_lin): Linear(in_features=768, out_features=768, bias=True)
(k_lin): Linear(in_features=768, out_features=768, bias=True)
(v_lin): Linear(in_features=768, out_features=768, bias=True)
(out_lin): Linear(in_features=768, out_features=768, bias=True)
)
(sa_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(ffn): FFN(
(dropout): Dropout(p=0.1, inplace=False)
(lin1): Linear(in_features=768, out_features=3072, bias=True)
(lin2): Linear(in_features=3072, out_features=768, bias=True)
(activation): GELUActivation()
)
(output_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
)
(1): TransformerBlock(
(attention): MultiHeadSelfAttention(
(dropout): Dropout(p=0.1, inplace=False)
(q_lin): Linear(in_features=768, out_features=768, bias=True)
(k_lin): Linear(in_features=768, out_features=768, bias=True)
(v_lin): Linear(in_features=768, out_features=768, bias=True)
(out_lin): Linear(in_features=768, out_features=768, bias=True)
)
(sa_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(ffn): FFN(
(dropout): Dropout(p=0.1, inplace=False)
(lin1): Linear(in_features=768, out_features=3072, bias=True)
(lin2): Linear(in_features=3072, out_features=768, bias=True)
(activation): GELUActivation()
)
(output_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
)
(2): TransformerBlock(
(attention): MultiHeadSelfAttention(
(dropout): Dropout(p=0.1, inplace=False)
(q_lin): Linear(in_features=768, out_features=768, bias=True)
(k_lin): Linear(in_features=768, out_features=768, bias=True)
(v_lin): Linear(in_features=768, out_features=768, bias=True)
(out_lin): Linear(in_features=768, out_features=768, bias=True)
)
(sa_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(ffn): FFN(
(dropout): Dropout(p=0.1, inplace=False)
(lin1): Linear(in_features=768, out_features=3072, bias=True)
(lin2): Linear(in_features=3072, out_features=768, bias=True)
(activation): GELUActivation()
)
(output_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
)
(3): TransformerBlock(
(attention): MultiHeadSelfAttention(
(dropout): Dropout(p=0.1, inplace=False)
(q_lin): Linear(in_features=768, out_features=768, bias=True)
(k_lin): Linear(in_features=768, out_features=768, bias=True)
(v_lin): Linear(in_features=768, out_features=768, bias=True)
(out_lin): Linear(in_features=768, out_features=768, bias=True)
)
(sa_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(ffn): FFN(
(dropout): Dropout(p=0.1, inplace=False)
(lin1): Linear(in_features=768, out_features=3072, bias=True)
(lin2): Linear(in_features=3072, out_features=768, bias=True)
(activation): GELUActivation()
)
(output_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
)
(4): TransformerBlock(
(attention): MultiHeadSelfAttention(
(dropout): Dropout(p=0.1, inplace=False)
(q_lin): Linear(in_features=768, out_features=768, bias=True)
(k_lin): Linear(in_features=768, out_features=768, bias=True)
(v_lin): Linear(in_features=768, out_features=768, bias=True)
(out_lin): Linear(in_features=768, out_features=768, bias=True)
)
(sa_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(ffn): FFN(
(dropout): Dropout(p=0.1, inplace=False)
(lin1): Linear(in_features=768, out_features=3072, bias=True)
(lin2): Linear(in_features=3072, out_features=768, bias=True)
(activation): GELUActivation()
)
(output_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
)
(5): TransformerBlock(
(attention): MultiHeadSelfAttention(
(dropout): Dropout(p=0.1, inplace=False)
(q_lin): Linear(in_features=768, out_features=768, bias=True)
(k_lin): Linear(in_features=768, out_features=768, bias=True)
(v_lin): Linear(in_features=768, out_features=768, bias=True)
(out_lin): Linear(in_features=768, out_features=768, bias=True)
)
(sa_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(ffn): FFN(
(dropout): Dropout(p=0.1, inplace=False)
(lin1): Linear(in_features=768, out_features=3072, bias=True)
(lin2): Linear(in_features=3072, out_features=768, bias=True)
(activation): GELUActivation()
)
(output_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
)
)
)
)
(pre_classifier): Linear(in_features=768, out_features=768, bias=True)
(classifier): Linear(in_features=768, out_features=20, bias=True)
(dropout): Dropout(p=0.2, inplace=False)
)
),
) |
| tokenizer__max_length | 256 |
| tokenizer__return_attention_mask | True |
| tokenizer__return_length | False |
| tokenizer__return_tensors | pt |
| tokenizer__return_token_type_ids | False |
| tokenizer__tokenizer | distilbert-base-uncased |
| tokenizer__train | False |
| tokenizer__verbose | 0 |
| tokenizer__vocab_size | |
| net__module | <class '__main__.BertModule'> |
| net__criterion | <class 'torch.nn.modules.loss.CrossEntropyLoss'> |
| net__optimizer | <class 'torch.optim.adamw.AdamW'> |
| net__lr | 5e-05 |
| net__max_epochs | 3 |
| net__batch_size | 8 |
| net__iterator_train | <class 'torch.utils.data.dataloader.DataLoader'> |
| net__iterator_valid | <class 'torch.utils.data.dataloader.DataLoader'> |
| net__dataset | <class 'skorch.dataset.Dataset'> |
| net__train_split | <skorch.dataset.ValidSplit object at 0x7f9945e18c90> |
| net__callbacks | [<skorch.callbacks.lr_scheduler.LRScheduler object at 0x7f9945da85d0>, <skorch.callbacks.logging.ProgressBar object at 0x7f9945da8250>] |
| net__predict_nonlinearity | auto |
| net__warm_start | False |
| net__verbose | 1 |
| net__device | cuda |
| net___params_to_validate | {'module__num_labels', 'module__name', 'iterator_train__shuffle'} |
| net__module__name | distilbert-base-uncased |
| net__module__num_labels | 20 |
| net__iterator_train__shuffle | True |
| net__classes | |
| net__callbacks__epoch_timer | <skorch.callbacks.logging.EpochTimer object at 0x7f993cb300d0> |
| net__callbacks__train_loss | <skorch.callbacks.scoring.PassthroughScoring object at 0x7f993cb306d0> |
| net__callbacks__train_loss__name | train_loss |
| net__callbacks__train_loss__lower_is_better | True |
| net__callbacks__train_loss__on_train | True |
| net__callbacks__valid_loss | <skorch.callbacks.scoring.PassthroughScoring object at 0x7f993cb30ed0> |
| net__callbacks__valid_loss__name | valid_loss |
| net__callbacks__valid_loss__lower_is_better | True |
| net__callbacks__valid_loss__on_train | False |
| net__callbacks__valid_acc | <skorch.callbacks.scoring.EpochScoring object at 0x7f993cb30410> |
| net__callbacks__valid_acc__scoring | accuracy |
| net__callbacks__valid_acc__lower_is_better | False |
| net__callbacks__valid_acc__on_train | False |
| net__callbacks__valid_acc__name | valid_acc |
| net__callbacks__valid_acc__target_extractor | <function to_numpy at 0x7f9945e46a70> |
| net__callbacks__valid_acc__use_caching | True |
| net__callbacks__LRScheduler | <skorch.callbacks.lr_scheduler.LRScheduler object at 0x7f9945da85d0> |
| net__callbacks__LRScheduler__policy | <class 'torch.optim.lr_scheduler.LambdaLR'> |
| net__callbacks__LRScheduler__monitor | train_loss |
| net__callbacks__LRScheduler__event_name | event_lr |
| net__callbacks__LRScheduler__step_every | batch |
| net__callbacks__LRScheduler__lr_lambda | <function lr_schedule at 0x7f9945d9c440> |
| net__callbacks__ProgressBar | <skorch.callbacks.logging.ProgressBar object at 0x7f9945da8250> |
| net__callbacks__ProgressBar__batches_per_epoch | auto |
| net__callbacks__ProgressBar__detect_notebook | True |
| net__callbacks__ProgressBar__postfix_keys | ['train_loss', 'valid_loss'] |
| net__callbacks__print_log | <skorch.callbacks.logging.PrintLog object at 0x7f993cb30dd0> |
| net__callbacks__print_log__keys_ignored | |
| net__callbacks__print_log__sink | <built-in function print> |
| net__callbacks__print_log__tablefmt | simple |
| net__callbacks__print_log__floatfmt | .4f |
| net__callbacks__print_log__stralign | right |
</details>
### Model Plot
The model plot is below.
<style>#sk-4e25a02e-dd88-4cf5-9fc1-aa5db6749fbb {color: black;background-color: white;}#sk-4e25a02e-dd88-4cf5-9fc1-aa5db6749fbb pre{padding: 0;}#sk-4e25a02e-dd88-4cf5-9fc1-aa5db6749fbb div.sk-toggleable {background-color: white;}#sk-4e25a02e-dd88-4cf5-9fc1-aa5db6749fbb label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-4e25a02e-dd88-4cf5-9fc1-aa5db6749fbb label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-4e25a02e-dd88-4cf5-9fc1-aa5db6749fbb label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-4e25a02e-dd88-4cf5-9fc1-aa5db6749fbb div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-4e25a02e-dd88-4cf5-9fc1-aa5db6749fbb div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-4e25a02e-dd88-4cf5-9fc1-aa5db6749fbb div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-4e25a02e-dd88-4cf5-9fc1-aa5db6749fbb input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-4e25a02e-dd88-4cf5-9fc1-aa5db6749fbb input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-4e25a02e-dd88-4cf5-9fc1-aa5db6749fbb div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-4e25a02e-dd88-4cf5-9fc1-aa5db6749fbb div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-4e25a02e-dd88-4cf5-9fc1-aa5db6749fbb input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-4e25a02e-dd88-4cf5-9fc1-aa5db6749fbb div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-4e25a02e-dd88-4cf5-9fc1-aa5db6749fbb div.sk-estimator:hover {background-color: #d4ebff;}#sk-4e25a02e-dd88-4cf5-9fc1-aa5db6749fbb div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-4e25a02e-dd88-4cf5-9fc1-aa5db6749fbb div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-4e25a02e-dd88-4cf5-9fc1-aa5db6749fbb div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-4e25a02e-dd88-4cf5-9fc1-aa5db6749fbb div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;}#sk-4e25a02e-dd88-4cf5-9fc1-aa5db6749fbb div.sk-item {z-index: 1;}#sk-4e25a02e-dd88-4cf5-9fc1-aa5db6749fbb div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;}#sk-4e25a02e-dd88-4cf5-9fc1-aa5db6749fbb div.sk-parallel::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-4e25a02e-dd88-4cf5-9fc1-aa5db6749fbb div.sk-parallel-item {display: flex;flex-direction: column;position: relative;background-color: white;}#sk-4e25a02e-dd88-4cf5-9fc1-aa5db6749fbb div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-4e25a02e-dd88-4cf5-9fc1-aa5db6749fbb div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-4e25a02e-dd88-4cf5-9fc1-aa5db6749fbb div.sk-parallel-item:only-child::after {width: 0;}#sk-4e25a02e-dd88-4cf5-9fc1-aa5db6749fbb div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;position: relative;}#sk-4e25a02e-dd88-4cf5-9fc1-aa5db6749fbb div.sk-label label {font-family: monospace;font-weight: bold;background-color: white;display: inline-block;line-height: 1.2em;}#sk-4e25a02e-dd88-4cf5-9fc1-aa5db6749fbb div.sk-label-container {position: relative;z-index: 2;text-align: center;}#sk-4e25a02e-dd88-4cf5-9fc1-aa5db6749fbb div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-4e25a02e-dd88-4cf5-9fc1-aa5db6749fbb div.sk-text-repr-fallback {display: none;}</style><div id="sk-4e25a02e-dd88-4cf5-9fc1-aa5db6749fbb" class="sk-top-container"><div class="sk-text-repr-fallback"><pre>Pipeline(steps=[('tokenizer',HuggingfacePretrainedTokenizer(tokenizer='distilbert-base-uncased')),('net',<class 'skorch.classifier.NeuralNetClassifier'>[initialized](module_=BertModule((bert): DistilBertForSequenceClassification((distilbert): DistilBertModel((embeddings): Embeddings((word_embeddings): Embedding(30522, 768, padding_idx=0)(position_embeddin...(lin1): Linear(in_features=768, out_features=3072, bias=True)(lin2): Linear(in_features=3072, out_features=768, bias=True)(activation): GELUActivation())(output_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)))))(pre_classifier): Linear(in_features=768, out_features=768, bias=True)(classifier): Linear(in_features=768, out_features=20, bias=True)(dropout): Dropout(p=0.2, inplace=False))),
))])</pre><b>Please rerun this cell to show the HTML repr or trust the notebook.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="4905268f-3ec2-45fc-8bc7-80d9200ae5a5" type="checkbox" ><label for="4905268f-3ec2-45fc-8bc7-80d9200ae5a5" class="sk-toggleable__label sk-toggleable__label-arrow">Pipeline</label><div class="sk-toggleable__content"><pre>Pipeline(steps=[('tokenizer',HuggingfacePretrainedTokenizer(tokenizer='distilbert-base-uncased')),('net',<class 'skorch.classifier.NeuralNetClassifier'>[initialized](module_=BertModule((bert): DistilBertForSequenceClassification((distilbert): DistilBertModel((embeddings): Embeddings((word_embeddings): Embedding(30522, 768, padding_idx=0)(position_embeddin...(lin1): Linear(in_features=768, out_features=3072, bias=True)(lin2): Linear(in_features=3072, out_features=768, bias=True)(activation): GELUActivation())(output_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)))))(pre_classifier): Linear(in_features=768, out_features=768, bias=True)(classifier): Linear(in_features=768, out_features=20, bias=True)(dropout): Dropout(p=0.2, inplace=False))),
))])</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="4c9a801f-37d5-4fdb-9892-222c86b927bf" type="checkbox" ><label for="4c9a801f-37d5-4fdb-9892-222c86b927bf" class="sk-toggleable__label sk-toggleable__label-arrow">HuggingfacePretrainedTokenizer</label><div class="sk-toggleable__content"><pre>HuggingfacePretrainedTokenizer(tokenizer='distilbert-base-uncased')</pre></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="062dd9ff-2b54-4166-90fc-fa3276cd482a" type="checkbox" ><label for="062dd9ff-2b54-4166-90fc-fa3276cd482a" class="sk-toggleable__label sk-toggleable__label-arrow">NeuralNetClassifier</label><div class="sk-toggleable__content"><pre><class 'skorch.classifier.NeuralNetClassifier'>[initialized](module_=BertModule((bert): DistilBertForSequenceClassification((distilbert): DistilBertModel((embeddings): Embeddings((word_embeddings): Embedding(30522, 768, padding_idx=0)(position_embeddings): Embedding(512, 768)(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)(dropout): Dropout(p=0.1, inplace=False))(transformer): Transformer((layer): ModuleList((0): TransformerBlock((attention): MultiHeadSelfAttention((dropout): Dropout(p=0.1, inplace=False)(q_lin): Linear(in_features=768, out_features=768, bias=True)(k_lin): Linear(in_features=768, out_features=768, bias=True)(v_lin): Linear(in_features=768, out_features=768, bias=True)(out_lin): Linear(in_features=768, out_features=768, bias=True))(sa_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)(ffn): FFN((dropout): Dropout(p=0.1, inplace=False)(lin1): Linear(in_features=768, out_features=3072, bias=True)(lin2): Linear(in_features=3072, out_features=768, bias=True)(activation): GELUActivation())(output_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True))(1): TransformerBlock((attention): MultiHeadSelfAttention((dropout): Dropout(p=0.1, inplace=False)(q_lin): Linear(in_features=768, out_features=768, bias=True)(k_lin): Linear(in_features=768, out_features=768, bias=True)(v_lin): Linear(in_features=768, out_features=768, bias=True)(out_lin): Linear(in_features=768, out_features=768, bias=True))(sa_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)(ffn): FFN((dropout): Dropout(p=0.1, inplace=False)(lin1): Linear(in_features=768, out_features=3072, bias=True)(lin2): Linear(in_features=3072, out_features=768, bias=True)(activation): GELUActivation())(output_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True))(2): TransformerBlock((attention): MultiHeadSelfAttention((dropout): Dropout(p=0.1, inplace=False)(q_lin): Linear(in_features=768, out_features=768, bias=True)(k_lin): Linear(in_features=768, out_features=768, bias=True)(v_lin): Linear(in_features=768, out_features=768, bias=True)(out_lin): Linear(in_features=768, out_features=768, bias=True))(sa_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)(ffn): FFN((dropout): Dropout(p=0.1, inplace=False)(lin1): Linear(in_features=768, out_features=3072, bias=True)(lin2): Linear(in_features=3072, out_features=768, bias=True)(activation): GELUActivation())(output_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True))(3): TransformerBlock((attention): MultiHeadSelfAttention((dropout): Dropout(p=0.1, inplace=False)(q_lin): Linear(in_features=768, out_features=768, bias=True)(k_lin): Linear(in_features=768, out_features=768, bias=True)(v_lin): Linear(in_features=768, out_features=768, bias=True)(out_lin): Linear(in_features=768, out_features=768, bias=True))(sa_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)(ffn): FFN((dropout): Dropout(p=0.1, inplace=False)(lin1): Linear(in_features=768, out_features=3072, bias=True)(lin2): Linear(in_features=3072, out_features=768, bias=True)(activation): GELUActivation())(output_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True))(4): TransformerBlock((attention): MultiHeadSelfAttention((dropout): Dropout(p=0.1, inplace=False)(q_lin): Linear(in_features=768, out_features=768, bias=True)(k_lin): Linear(in_features=768, out_features=768, bias=True)(v_lin): Linear(in_features=768, out_features=768, bias=True)(out_lin): Linear(in_features=768, out_features=768, bias=True))(sa_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)(ffn): FFN((dropout): Dropout(p=0.1, inplace=False)(lin1): Linear(in_features=768, out_features=3072, bias=True)(lin2): Linear(in_features=3072, out_features=768, bias=True)(activation): GELUActivation())(output_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True))(5): TransformerBlock((attention): MultiHeadSelfAttention((dropout): Dropout(p=0.1, inplace=False)(q_lin): Linear(in_features=768, out_features=768, bias=True)(k_lin): Linear(in_features=768, out_features=768, bias=True)(v_lin): Linear(in_features=768, out_features=768, bias=True)(out_lin): Linear(in_features=768, out_features=768, bias=True))(sa_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)(ffn): FFN((dropout): Dropout(p=0.1, inplace=False)(lin1): Linear(in_features=768, out_features=3072, bias=True)(lin2): Linear(in_features=3072, out_features=768, bias=True)(activation): GELUActivation())(output_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)))))(pre_classifier): Linear(in_features=768, out_features=768, bias=True)(classifier): Linear(in_features=768, out_features=20, bias=True)(dropout): Dropout(p=0.2, inplace=False))),
)</pre></div></div></div></div></div></div></div>
## Evaluation Results
You can find the details about evaluation process and the evaluation results.
| Metric | Value |
|----------|---------|
| accuracy | 0.90562 |
| f1 score | 0.90562 |
# How to Get Started with the Model
Use the code below to get started with the model.
<details>
<summary> Click to expand </summary>
```python
[More Information Needed]
```
</details>
# Model Card Authors
This model card is written by following authors:
[More Information Needed]
# Model Card Contact
You can contact the model card authors through following channels:
[More Information Needed]
# Citation
Below you can find information related to citation.
**BibTeX:**
```
[More Information Needed]
```
# Additional Content
## Confusion matrix
![Confusion matrix](confusion_matrix.png)
## Classification Report
<details>
<summary> Click to expand </summary>
| index | precision | recall | f1-score | support |
|--------------------------|-------------|----------|------------|-----------|
| alt.atheism | 0.927273 | 0.85 | 0.886957 | 120 |
| comp.graphics | 0.85906 | 0.876712 | 0.867797 | 146 |
| comp.os.ms-windows.misc | 0.893617 | 0.851351 | 0.871972 | 148 |
| comp.sys.ibm.pc.hardware | 0.666667 | 0.837838 | 0.742515 | 148 |
| comp.sys.mac.hardware | 0.901515 | 0.826389 | 0.862319 | 144 |
| comp.windows.x | 0.923077 | 0.891892 | 0.907216 | 148 |
| misc.forsale | 0.875862 | 0.869863 | 0.872852 | 146 |
| rec.autos | 0.893082 | 0.95302 | 0.922078 | 149 |
| rec.motorcycles | 0.937931 | 0.906667 | 0.922034 | 150 |
| rec.sport.baseball | 0.954248 | 0.979866 | 0.966887 | 149 |
| rec.sport.hockey | 0.979866 | 0.973333 | 0.976589 | 150 |
| sci.crypt | 0.993103 | 0.966443 | 0.979592 | 149 |
| sci.electronics | 0.869565 | 0.810811 | 0.839161 | 148 |
| sci.med | 0.973154 | 0.973154 | 0.973154 | 149 |
| sci.space | 0.973333 | 0.986486 | 0.979866 | 148 |
| soc.religion.christian | 0.927152 | 0.933333 | 0.930233 | 150 |
| talk.politics.guns | 0.961538 | 0.919118 | 0.93985 | 136 |
| talk.politics.mideast | 0.978571 | 0.971631 | 0.975089 | 141 |
| talk.politics.misc | 0.925234 | 0.853448 | 0.887892 | 116 |
| talk.religion.misc | 0.728972 | 0.829787 | 0.776119 | 94 |
| macro avg | 0.907141 | 0.903057 | 0.904009 | 2829 |
| weighted avg | 0.909947 | 0.90562 | 0.906742 | 2829 |
</details> |