LongT5-Base-NSPCC / README.md
scott156's picture
End of training
c6d22b1 verified
|
raw
history blame
2.18 kB
metadata
license: apache-2.0
base_model: google/long-t5-tglobal-base
tags:
  - generated_from_trainer
metrics:
  - rouge
model-index:
  - name: LongT5-Base-NSPCC
    results: []

LongT5-Base-NSPCC

This model is a fine-tuned version of google/long-t5-tglobal-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7756
  • Rouge1: 0.5243
  • Rouge2: 0.242
  • Rougel: 0.3113
  • Rougelsum: 0.3122
  • Gen Len: 331.8511

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.03
  • num_epochs: 6

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
4.0417 0.9947 94 0.8455 0.4707 0.1986 0.2704 0.2718 303.4468
1.0117 2.0 189 0.8058 0.5178 0.239 0.3066 0.3077 326.3085
0.886 2.9947 283 0.7798 0.5085 0.2272 0.298 0.2989 348.7979
0.805 4.0 378 0.7725 0.5194 0.2386 0.309 0.31 331.3191
0.7724 4.9947 472 0.7749 0.5224 0.2423 0.3133 0.3147 333.6489
0.7514 5.9683 564 0.7756 0.5243 0.242 0.3113 0.3122 331.8511

Framework versions

  • Transformers 4.40.1
  • Pytorch 2.2.1+cu121
  • Datasets 2.19.0
  • Tokenizers 0.19.1