File size: 1,864 Bytes
240c66f 54a1ce6 240c66f 54a1ce6 240c66f 54a1ce6 240c66f 54a1ce6 240c66f 54a1ce6 240c66f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
---
license: gemma
base_model: google/gemma-2-2b-it
tags:
- easylm
- alignment-handbook
- trl
- reward-trainer
- generated_from_trainer
datasets:
- helpsteer-rm
metrics:
- accuracy
model-index:
- name: easylm-helpsteer-rm-gemma-2-2b-it
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: helpsteer-rm
type: helpsteer-rm
metrics:
- name: Accuracy
type: accuracy
value: 0.653179190751445
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# easylm-helpsteer-rm-gemma-2-2b-it
This model is a fine-tuned version of [google/gemma-2-2b-it](https://huggingface.co/google/gemma-2-2b-it) on the helpsteer-rm dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6647
- Accuracy: 0.6532
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 3
- total_train_batch_size: 3
- total_eval_batch_size: 3
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:--------:|
| 0.711 | 0.4579 | 1000 | 0.7638 | 0.6214 |
| 0.6407 | 0.9158 | 2000 | 0.6655 | 0.6329 |
### Framework versions
- Transformers 4.43.3
- Pytorch 2.4.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
|