|
from torchvision.datasets.utils import download_url |
|
from ldm.util import instantiate_from_config |
|
import torch |
|
import os |
|
|
|
from google.colab import files |
|
from IPython.display import Image as ipyimg |
|
import ipywidgets as widgets |
|
from PIL import Image |
|
from numpy import asarray |
|
from einops import rearrange, repeat |
|
import torch, torchvision |
|
from ldm.models.diffusion.ddim import DDIMSampler |
|
from ldm.util import ismap |
|
import time |
|
from omegaconf import OmegaConf |
|
|
|
|
|
def download_models(mode): |
|
|
|
if mode == "superresolution": |
|
|
|
url_conf = 'https://heibox.uni-heidelberg.de/f/31a76b13ea27482981b4/?dl=1' |
|
url_ckpt = 'https://heibox.uni-heidelberg.de/f/578df07c8fc04ffbadf3/?dl=1' |
|
|
|
path_conf = 'logs/diffusion/superresolution_bsr/configs/project.yaml' |
|
path_ckpt = 'logs/diffusion/superresolution_bsr/checkpoints/last.ckpt' |
|
|
|
download_url(url_conf, path_conf) |
|
download_url(url_ckpt, path_ckpt) |
|
|
|
path_conf = path_conf + '/?dl=1' |
|
path_ckpt = path_ckpt + '/?dl=1' |
|
return path_conf, path_ckpt |
|
|
|
else: |
|
raise NotImplementedError |
|
|
|
|
|
def load_model_from_config(config, ckpt): |
|
print(f"Loading model from {ckpt}") |
|
pl_sd = torch.load(ckpt, map_location="cpu") |
|
global_step = pl_sd["global_step"] |
|
sd = pl_sd["state_dict"] |
|
model = instantiate_from_config(config.model) |
|
m, u = model.load_state_dict(sd, strict=False) |
|
model.cuda() |
|
model.eval() |
|
return {"model": model}, global_step |
|
|
|
|
|
def get_model(mode): |
|
path_conf, path_ckpt = download_models(mode) |
|
config = OmegaConf.load(path_conf) |
|
model, step = load_model_from_config(config, path_ckpt) |
|
return model |
|
|
|
|
|
def get_custom_cond(mode): |
|
dest = "data/example_conditioning" |
|
|
|
if mode == "superresolution": |
|
uploaded_img = files.upload() |
|
filename = next(iter(uploaded_img)) |
|
name, filetype = filename.split(".") |
|
os.rename(f"{filename}", f"{dest}/{mode}/custom_{name}.{filetype}") |
|
|
|
elif mode == "text_conditional": |
|
w = widgets.Text(value='A cake with cream!', disabled=True) |
|
display(w) |
|
|
|
with open(f"{dest}/{mode}/custom_{w.value[:20]}.txt", 'w') as f: |
|
f.write(w.value) |
|
|
|
elif mode == "class_conditional": |
|
w = widgets.IntSlider(min=0, max=1000) |
|
display(w) |
|
with open(f"{dest}/{mode}/custom.txt", 'w') as f: |
|
f.write(w.value) |
|
|
|
else: |
|
raise NotImplementedError(f"cond not implemented for mode{mode}") |
|
|
|
|
|
def get_cond_options(mode): |
|
path = "data/example_conditioning" |
|
path = os.path.join(path, mode) |
|
onlyfiles = [f for f in sorted(os.listdir(path))] |
|
return path, onlyfiles |
|
|
|
|
|
def select_cond_path(mode): |
|
path = "data/example_conditioning" |
|
path = os.path.join(path, mode) |
|
onlyfiles = [f for f in sorted(os.listdir(path))] |
|
|
|
selected = widgets.RadioButtons( |
|
options=onlyfiles, |
|
description='Select conditioning:', |
|
disabled=False |
|
) |
|
display(selected) |
|
selected_path = os.path.join(path, selected.value) |
|
return selected_path |
|
|
|
|
|
def get_cond(mode, selected_path): |
|
example = dict() |
|
if mode == "superresolution": |
|
up_f = 4 |
|
visualize_cond_img(selected_path) |
|
|
|
c = Image.open(selected_path) |
|
c = torch.unsqueeze(torchvision.transforms.ToTensor()(c), 0) |
|
c_up = torchvision.transforms.functional.resize(c, size=[up_f * c.shape[2], up_f * c.shape[3]], antialias=True) |
|
c_up = rearrange(c_up, '1 c h w -> 1 h w c') |
|
c = rearrange(c, '1 c h w -> 1 h w c') |
|
c = 2. * c - 1. |
|
|
|
c = c.to(torch.device("cuda")) |
|
example["LR_image"] = c |
|
example["image"] = c_up |
|
|
|
return example |
|
|
|
|
|
def visualize_cond_img(path): |
|
display(ipyimg(filename=path)) |
|
|
|
|
|
def run(model, selected_path, task, custom_steps, resize_enabled=False, classifier_ckpt=None, global_step=None): |
|
|
|
example = get_cond(task, selected_path) |
|
|
|
save_intermediate_vid = False |
|
n_runs = 1 |
|
masked = False |
|
guider = None |
|
ckwargs = None |
|
mode = 'ddim' |
|
ddim_use_x0_pred = False |
|
temperature = 1. |
|
eta = 1. |
|
make_progrow = True |
|
custom_shape = None |
|
|
|
height, width = example["image"].shape[1:3] |
|
split_input = height >= 128 and width >= 128 |
|
|
|
if split_input: |
|
ks = 128 |
|
stride = 64 |
|
vqf = 4 |
|
model.split_input_params = {"ks": (ks, ks), "stride": (stride, stride), |
|
"vqf": vqf, |
|
"patch_distributed_vq": True, |
|
"tie_braker": False, |
|
"clip_max_weight": 0.5, |
|
"clip_min_weight": 0.01, |
|
"clip_max_tie_weight": 0.5, |
|
"clip_min_tie_weight": 0.01} |
|
else: |
|
if hasattr(model, "split_input_params"): |
|
delattr(model, "split_input_params") |
|
|
|
invert_mask = False |
|
|
|
x_T = None |
|
for n in range(n_runs): |
|
if custom_shape is not None: |
|
x_T = torch.randn(1, custom_shape[1], custom_shape[2], custom_shape[3]).to(model.device) |
|
x_T = repeat(x_T, '1 c h w -> b c h w', b=custom_shape[0]) |
|
|
|
logs = make_convolutional_sample(example, model, |
|
mode=mode, custom_steps=custom_steps, |
|
eta=eta, swap_mode=False , masked=masked, |
|
invert_mask=invert_mask, quantize_x0=False, |
|
custom_schedule=None, decode_interval=10, |
|
resize_enabled=resize_enabled, custom_shape=custom_shape, |
|
temperature=temperature, noise_dropout=0., |
|
corrector=guider, corrector_kwargs=ckwargs, x_T=x_T, save_intermediate_vid=save_intermediate_vid, |
|
make_progrow=make_progrow,ddim_use_x0_pred=ddim_use_x0_pred |
|
) |
|
return logs |
|
|
|
|
|
@torch.no_grad() |
|
def convsample_ddim(model, cond, steps, shape, eta=1.0, callback=None, normals_sequence=None, |
|
mask=None, x0=None, quantize_x0=False, img_callback=None, |
|
temperature=1., noise_dropout=0., score_corrector=None, |
|
corrector_kwargs=None, x_T=None, log_every_t=None |
|
): |
|
|
|
ddim = DDIMSampler(model) |
|
bs = shape[0] |
|
shape = shape[1:] |
|
print(f"Sampling with eta = {eta}; steps: {steps}") |
|
samples, intermediates = ddim.sample(steps, batch_size=bs, shape=shape, conditioning=cond, callback=callback, |
|
normals_sequence=normals_sequence, quantize_x0=quantize_x0, eta=eta, |
|
mask=mask, x0=x0, temperature=temperature, verbose=False, |
|
score_corrector=score_corrector, |
|
corrector_kwargs=corrector_kwargs, x_T=x_T) |
|
|
|
return samples, intermediates |
|
|
|
|
|
@torch.no_grad() |
|
def make_convolutional_sample(batch, model, mode="vanilla", custom_steps=None, eta=1.0, swap_mode=False, masked=False, |
|
invert_mask=True, quantize_x0=False, custom_schedule=None, decode_interval=1000, |
|
resize_enabled=False, custom_shape=None, temperature=1., noise_dropout=0., corrector=None, |
|
corrector_kwargs=None, x_T=None, save_intermediate_vid=False, make_progrow=True,ddim_use_x0_pred=False): |
|
log = dict() |
|
|
|
z, c, x, xrec, xc = model.get_input(batch, model.first_stage_key, |
|
return_first_stage_outputs=True, |
|
force_c_encode=not (hasattr(model, 'split_input_params') |
|
and model.cond_stage_key == 'coordinates_bbox'), |
|
return_original_cond=True) |
|
|
|
log_every_t = 1 if save_intermediate_vid else None |
|
|
|
if custom_shape is not None: |
|
z = torch.randn(custom_shape) |
|
print(f"Generating {custom_shape[0]} samples of shape {custom_shape[1:]}") |
|
|
|
z0 = None |
|
|
|
log["input"] = x |
|
log["reconstruction"] = xrec |
|
|
|
if ismap(xc): |
|
log["original_conditioning"] = model.to_rgb(xc) |
|
if hasattr(model, 'cond_stage_key'): |
|
log[model.cond_stage_key] = model.to_rgb(xc) |
|
|
|
else: |
|
log["original_conditioning"] = xc if xc is not None else torch.zeros_like(x) |
|
if model.cond_stage_model: |
|
log[model.cond_stage_key] = xc if xc is not None else torch.zeros_like(x) |
|
if model.cond_stage_key =='class_label': |
|
log[model.cond_stage_key] = xc[model.cond_stage_key] |
|
|
|
with model.ema_scope("Plotting"): |
|
t0 = time.time() |
|
img_cb = None |
|
|
|
sample, intermediates = convsample_ddim(model, c, steps=custom_steps, shape=z.shape, |
|
eta=eta, |
|
quantize_x0=quantize_x0, img_callback=img_cb, mask=None, x0=z0, |
|
temperature=temperature, noise_dropout=noise_dropout, |
|
score_corrector=corrector, corrector_kwargs=corrector_kwargs, |
|
x_T=x_T, log_every_t=log_every_t) |
|
t1 = time.time() |
|
|
|
if ddim_use_x0_pred: |
|
sample = intermediates['pred_x0'][-1] |
|
|
|
x_sample = model.decode_first_stage(sample) |
|
|
|
try: |
|
x_sample_noquant = model.decode_first_stage(sample, force_not_quantize=True) |
|
log["sample_noquant"] = x_sample_noquant |
|
log["sample_diff"] = torch.abs(x_sample_noquant - x_sample) |
|
except: |
|
pass |
|
|
|
log["sample"] = x_sample |
|
log["time"] = t1 - t0 |
|
|
|
return log |