File size: 3,373 Bytes
064610a
d097f65
 
 
 
 
 
9e8d6d6
 
 
 
 
 
 
 
 
d097f65
064610a
d097f65
9e8d6d6
 
 
 
 
 
 
 
689a47c
 
9e8d6d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f454cb
8b1eee9
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
- information-retrieval
language: pl
license: apache-2.0
widget:
- source_sentence: "query: Jak dożyć 100 lat?"
  sentences:
    - "passage: Trzeba zdrowo się odżywiać i uprawiać sport."
    - "passage: Trzeba pić alkohol, imprezować i jeździć szybkimi autami."
    - "passage: Gdy trwała kampania politycy zapewniali, że rozprawią się z zakazem niedzielnego handlu."

---

<h1 align="center">MMLW-retrieval-e5-large</h1>

MMLW (muszę mieć lepszą wiadomość) are neural text encoders for Polish.
This model is optimized for information retrieval tasks. It can transform queries and passages to 1024 dimensional vectors. 
The model was developed using a two-step procedure: 
- In the first step, it was initialized with multilingual E5 checkpoint, and then trained with [multilingual knowledge distillation method](https://aclanthology.org/2020.emnlp-main.365/) on a diverse corpus of 60 million Polish-English text pairs. We utilised [English FlagEmbeddings (BGE)](https://huggingface.co/BAAI/bge-large-en) as teacher models for distillation. 
- The second step involved fine-tuning the obtained models with contrastrive loss on [Polish MS MARCO](https://huggingface.co/datasets/clarin-knext/msmarco-pl) training split. In order to improve the efficiency of contrastive training, we used large batch sizes - 1152 for small, 768 for base, and 288 for large models. Fine-tuning was conducted on a cluster of 12 A100 GPUs.

⚠️ **2023-12-26:** We have updated the model to a new version with improved results. You can still download the previous version using the **v1** tag: `AutoModel.from_pretrained("sdadas/mmlw-retrieval-e5-large", revision="v1")` ⚠️

## Usage (Sentence-Transformers)

⚠️ Our dense retrievers require the use of specific prefixes and suffixes when encoding texts. For this model,  queries should be prefixed with **"query: "** and passages with **"passage: "** ⚠️

You can use the model like this with [sentence-transformers](https://www.SBERT.net):

```python
from sentence_transformers import SentenceTransformer
from sentence_transformers.util import cos_sim

query_prefix = "query: "
answer_prefix = "passage: "
queries = [query_prefix + "Jak dożyć 100 lat?"]
answers = [
    answer_prefix + "Trzeba zdrowo się odżywiać i uprawiać sport.",
    answer_prefix + "Trzeba pić alkohol, imprezować i jeździć szybkimi autami.",
    answer_prefix + "Gdy trwała kampania politycy zapewniali, że rozprawią się z zakazem niedzielnego handlu."
]
model = SentenceTransformer("sdadas/mmlw-retrieval-e5-large")
queries_emb = model.encode(queries, convert_to_tensor=True, show_progress_bar=False)
answers_emb = model.encode(answers, convert_to_tensor=True, show_progress_bar=False)

best_answer = cos_sim(queries_emb, answers_emb).argmax().item()
print(answers[best_answer])
# Trzeba zdrowo się odżywiać i uprawiać sport.
```

## Evaluation Results
The model achieves **NDCG@10** of **58.30** on the Polish Information Retrieval Benchmark. See [PIRB Leaderboard](https://huggingface.co/spaces/sdadas/pirb) for detailed results.

## Acknowledgements
This model was trained with the A100 GPU cluster support delivered by the Gdansk University of Technology within the TASK center initiative.