--- language: es license: gpl-3.0 tags: - spaCy - Token Classification widget: - text: "Fue antes de llegar a Sigüeiro, en el Camino de Santiago." - text: "El proyecto lo financia el Ministerio de Industria y Competitividad." model-index: - name: es_spacy_ner_cds results: [] --- # Introduction spaCy NER model trained in the domain of tourism related to the Way of Saint Jacques. It recognizes four types of entities: location (LOC), organizations (ORG), person (PER) and miscellaneous (MISC). ## Usage You can use this model with the spaCy *pipeline* for NER. ```python import spacy from spacy.pipeline import merge_entities nlp = spacy.load("es_spacy_ner_cds") nlp.add_pipe('sentencizer') example = "Fue antes de llegar a Sigüeiro, en el Camino de Santiago. El proyecto lo financia el Ministerio de Industria y Competitiv idad." ner_pipe = nlp(example) print(ner_pipe.ents) for token in merge_entities(ner_pipe): print(token.text, token.ent_type_) ``` ## Dataset ToDo ## Model performance entity|precision|recall|f1 -|-|-|- PER|0.942|0.890|0.915 ORG|0.869|0.688|0.768 LOC|0.975|0.987|0.981 MISC|0.854|0.757|0.803 micro avg|0.963|0.958|0.961 macro avg|0.910|0.831|0.867