--- language: es license: gpl tags: - PyTorch - Transformers - Token Classification - roberta - roberta-base-bne widget: - text: "Fue antes de llegar a Sigüeiro, en el Camino de Santiago." - text: "El proyecto lo financia el Ministerio de Industria y Competitividad." model-index: - name: roberta-bne-ner-cds results: [] --- # Introduction This model is a fine-tuned version of [roberta-base-bne](https://huggingface.co/PlanTL-GOB-ES/roberta-base-bne) for Named-Entity Recognition, in the domain of tourism related to the Way of Saint Jacques. It recognizes four types of entities: location (LOC), organizations (ORG), person (PER) and miscellaneous (MISC). ## Usage You can use this model with Transformers *pipeline* for NER. ```python from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline tokenizer = AutoTokenizer.from_pretrained("roberta-bne-ner-cds") model = AutoModelForTokenClassification.from_pretrained("roberta-bne-ner-cds") example = "Fue antes de llegar a Sigüeiro, en el Camino de Santiago. El proyecto lo financia el Ministerio de Industria y Competitividad." ner_pipe = pipeline('ner', model=model, tokenizer=tokenizer, aggregation_strategy="simple") for ent in ner_pipe(example): print(ent) ``` ## Model performance entity|precision|recall|f1 -|-|-|- PER|0.965|0.924|0.944 ORG|0.900|0.701|0.788 LOC|0.982|0.985|0.983 MISC|0.798|0.874|0.834 Overall|0.964|0.968|0.966 ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu117 - Datasets 2.7.1 - Tokenizers 0.13.2