sdpetrides commited on
Commit
72fb460
1 Parent(s): 1af464f

Initial commit with basic training

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 214.74 +/- 27.57
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: LunarLander-v2
20
+ type: LunarLander-v2
21
+ ---
22
+
23
+ # **PPO** Agent playing **LunarLander-v2**
24
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
25
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
26
+
27
+ ## Usage (with Stable-baselines3)
28
+ TODO: Add your code
29
+
30
+
31
+ ```python
32
+ from stable_baselines3 import ...
33
+ from huggingface_sb3 import load_from_hub
34
+
35
+ ...
36
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe3fc418290>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe3fc418320>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe3fc4183b0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe3fc418440>", "_build": "<function ActorCriticPolicy._build at 0x7fe3fc4184d0>", "forward": "<function ActorCriticPolicy.forward at 0x7fe3fc418560>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe3fc4185f0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fe3fc418680>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe3fc418710>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe3fc4187a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe3fc418830>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fe3fc3e57b0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1653605597.098445, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAAgPQpvb52cj/uXAe9uZGCvlTOGL1iWoa8AAAAAAAAAAAAoge9SNnSOS8YrDtwzPI8rAfJuzbRr7sAAIA/AACAP83rvr3hPpS6fe1fuTTCwLRfiR07IHZ/OAAAgD8AAIA/TQt4PRSEibpLJke8p9wxM7wtPrpw4GezAACAPwAAgD+Av8k9KYhDuthEvbp29aa2Opg7u6LsFzYAAIA/AACAP3MfLb57BO261siPOrfzxjYRNNI70J6nuQAAgD8AAIA/zcrHvCnIObpYR7+7sQc4ODT1ajpdxXk6AACAPwAAgD9mLIo9cd0auanJSzqeuNm0H8nZu1tDdLkAAIA/AACAP23SY74t3Xw/vr0zvjk0BL9zVJy+frlzPQAAAAAAAAAApmzfPY/+C7p1rvO6YxxnN/2+PTsWLam2AACAPwAAgD8FFYK+15VgPHUynDzgkSq95SwPv+oOdL4AAAAAAACAP1qhoL0pBAG6NH6MuQk50rQQ/3w7eISiOAAAgD8AAIA/AM+0vRTIirr2luk7hNkEvYg6ULsb3U69AAAAAAAAAADAz429hSuxOFGKoLlVfboyri8QO9QHwTgAAIA/AACAP83aAz2PthS6TnLTuvEkp7WhtzW6AL/1OQAAgD8AAIA/GhHzvXs4wrrtCjs+J+reu8+iD70XfQo+AACAPwAAgD+UdJRiLg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVchAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIdvusMlPmOsCUhpRSlIwBbJRL94wBdJRHQIZJ0cABDG91fZQoaAZoCWgPQwjhtrbwvI5IwJSGlFKUaBVNIwFoFkdAhmT+6qbSZ3V9lChoBmgJaA9DCHGqtTALBFtAlIaUUpRoFU3oA2gWR0CGdWukk8ifdX2UKGgGaAloD0MI0jk/xXFKXkCUhpRSlGgVTegDaBZHQIaDqTY/Vy51fZQoaAZoCWgPQwg4LXjRVy5gQJSGlFKUaBVN6ANoFkdAhr5aQ/5cknV9lChoBmgJaA9DCH0JFRxek2FAlIaUUpRoFU3oA2gWR0CGxSPwNLDidX2UKGgGaAloD0MIjiEAOPY+U0CUhpRSlGgVTegDaBZHQIbI5hnanJl1fZQoaAZoCWgPQwguHt5zYN1gQJSGlFKUaBVN6ANoFkdAhtaJrULDynV9lChoBmgJaA9DCMTqjzAM82FAlIaUUpRoFU3oA2gWR0CG2Ussg+yJdX2UKGgGaAloD0MIX9BCAkZVXkCUhpRSlGgVTegDaBZHQIbgOUQkHD91fZQoaAZoCWgPQwg57//jhN5eQJSGlFKUaBVN6ANoFkdAhuDDGLk0anV9lChoBmgJaA9DCOyJrgu/w2BAlIaUUpRoFU3oA2gWR0CG5bGQ0XP7dX2UKGgGaAloD0MIaD7nbtcuXUCUhpRSlGgVTegDaBZHQIboMURFqi51fZQoaAZoCWgPQwht4uR+hw5kQJSGlFKUaBVN6ANoFkdAhukFOXVslHV9lChoBmgJaA9DCJTeN752UGJAlIaUUpRoFU3oA2gWR0CG7e2Ifr8jdX2UKGgGaAloD0MIKqp+pXNuY0CUhpRSlGgVTegDaBZHQIbxKzNUwSJ1fZQoaAZoCWgPQwiHhzB+Ggs6QJSGlFKUaBVNBAFoFkdAhveCzkZJkHV9lChoBmgJaA9DCOHSMecZozlAlIaUUpRoFUvYaBZHQIcCvXZoPCl1fZQoaAZoCWgPQwi2LF+X4bFCQJSGlFKUaBVL2WgWR0CHFjzySV4YdX2UKGgGaAloD0MItwiM9Q0eWECUhpRSlGgVTegDaBZHQIcWjEgntv51fZQoaAZoCWgPQwjF5A0w87NXQJSGlFKUaBVN6ANoFkdAhy8nBUJfIHV9lChoBmgJaA9DCOWAXU0e1mJAlIaUUpRoFU3oA2gWR0CHPMDxLCemdX2UKGgGaAloD0MIlpf8T/6YXUCUhpRSlGgVTegDaBZHQIdIznied091fZQoaAZoCWgPQwjshQK2A61iQJSGlFKUaBVN6ANoFkdAh0ziDdxhlXV9lChoBmgJaA9DCI8X0uEhN2ZAlIaUUpRoFU3oA2gWR0CHhrwvQF9sdX2UKGgGaAloD0MIqI5VSs8AYUCUhpRSlGgVTegDaBZHQIeJ10DEFW51fZQoaAZoCWgPQwhZxLDDmBBgQJSGlFKUaBVN6ANoFkdAh5ja42CNCXV9lChoBmgJaA9DCHy2Dg72lhBAlIaUUpRoFUvfaBZHQIebjvqkdmx1fZQoaAZoCWgPQwh4KuCe56VkQJSGlFKUaBVN6ANoFkdAh5+IzeoDPnV9lChoBmgJaA9DCK33G+04kGBAlIaUUpRoFU3oA2gWR0CHn/fkWAPNdX2UKGgGaAloD0MI5kAPte1UYkCUhpRSlGgVTegDaBZHQIekkDjin511fZQoaAZoCWgPQwiX4xWInhpnQJSGlFKUaBVN6ANoFkdAh6cDhUBGQXV9lChoBmgJaA9DCIhLjjulv2FAlIaUUpRoFU3oA2gWR0CHrKHaews5dX2UKGgGaAloD0MI0V0SZ8WIZECUhpRSlGgVTegDaBZHQIewElolD4R1fZQoaAZoCWgPQwihZkgVxcM4QJSGlFKUaBVL3WgWR0CHt0RZlnRLdX2UKGgGaAloD0MIaQJFLGIOVECUhpRSlGgVTegDaBZHQIfC6S1Vo6F1fZQoaAZoCWgPQwgkY7X5f7tBQJSGlFKUaBVL9GgWR0CH0S5GSZBtdX2UKGgGaAloD0MIK6ORzysFXkCUhpRSlGgVTegDaBZHQIfVuf5DZ151fZQoaAZoCWgPQwhLrIxGPhhfQJSGlFKUaBVN6ANoFkdAh9YEF4cFQnV9lChoBmgJaA9DCIts5/upMUxAlIaUUpRoFUvkaBZHQIfXKhg3Lmp1fZQoaAZoCWgPQwhtVRLZB/ElQJSGlFKUaBVL6GgWR0CH5E9du5z6dX2UKGgGaAloD0MI+5KNB9u0YECUhpRSlGgVTegDaBZHQIftSL876pJ1fZQoaAZoCWgPQwjpYP2fwxFfQJSGlFKUaBVN6ANoFkdAh/tKcd5prXV9lChoBmgJaA9DCFfqWRDKGVZAlIaUUpRoFU3oA2gWR0CIC+6nzg/DdX2UKGgGaAloD0MI/n3GhQOLYkCUhpRSlGgVTegDaBZHQIgSRhQWN3p1fZQoaAZoCWgPQwgLfhtivEhIQJSGlFKUaBVL+2gWR0CISR1s+FDfdX2UKGgGaAloD0MIHH433TIgYECUhpRSlGgVTegDaBZHQIhLTNjbzsh1fZQoaAZoCWgPQwg5miMrvwzEv5SGlFKUaBVL+GgWR0CIVe0Jng5zdX2UKGgGaAloD0MIA5SGGoVmY0CUhpRSlGgVTegDaBZHQIhazxd6cAl1fZQoaAZoCWgPQwjFWKZfIkBGQJSGlFKUaBVN6ANoFkdAiGHZq/M4cXV9lChoBmgJaA9DCNGQ8SiVZVtAlIaUUpRoFU3oA2gWR0CIYkj1wo9cdX2UKGgGaAloD0MIEEHV6FWoYECUhpRSlGgVTegDaBZHQIhnTcj7hvR1fZQoaAZoCWgPQwhEp+fdWPhcQJSGlFKUaBVN6ANoFkdAiGoUmUnogXV9lChoBmgJaA9DCAUabOq8C2JAlIaUUpRoFU3oA2gWR0CIcCr/82rGdX2UKGgGaAloD0MIeZJ0zeQLYkCUhpRSlGgVTegDaBZHQIiXQao/A0t1fZQoaAZoCWgPQwi+3CdHgWNkQJSGlFKUaBVN6ANoFkdAiJxZJK8L8nV9lChoBmgJaA9DCINRSZ2AN1pAlIaUUpRoFU3oA2gWR0CInKvgWJrMdX2UKGgGaAloD0MIpONqZNdkYkCUhpRSlGgVTegDaBZHQIid4wVTJhh1fZQoaAZoCWgPQwh/bf30n0NpQJSGlFKUaBVNggFoFkdAiKEbGvOhTXV9lChoBmgJaA9DCMSUSKKXIGNAlIaUUpRoFU3oA2gWR0CIqjkd3jdYdX2UKGgGaAloD0MIOslWl1N0T0CUhpRSlGgVS8loFkdAiLjBp5/smnV9lChoBmgJaA9DCOokW11O/T5AlIaUUpRoFUvqaBZHQIi8JPO6d2B1fZQoaAZoCWgPQwgXuDzWDJJgQJSGlFKUaBVN6ANoFkdAiM9iKaXrt3V9lChoBmgJaA9DCMReKGA7SFxAlIaUUpRoFU3oA2gWR0CI1Y6XBxgidX2UKGgGaAloD0MIrkZ2pWV8XECUhpRSlGgVTegDaBZHQIjXFHH3lCF1fZQoaAZoCWgPQwhcrn5skvFjQJSGlFKUaBVN6ANoFkdAiNkjP4VRDXV9lChoBmgJaA9DCBh7L75o1WJAlIaUUpRoFU3oA2gWR0CJGRJW/8EWdX2UKGgGaAloD0MI+HDJcadMWUCUhpRSlGgVTegDaBZHQIkeC/dqL0l1fZQoaAZoCWgPQwjCL/XzprRhQJSGlFKUaBVN6ANoFkdAiSRVpKzzE3V9lChoBmgJaA9DCDuMSX8vgFhAlIaUUpRoFU3oA2gWR0CJJLaVUuL8dX2UKGgGaAloD0MITDRIwVOYKECUhpRSlGgVS/BoFkdAiSZw+UyHmHV9lChoBmgJaA9DCBR4J58eUldAlIaUUpRoFU3oA2gWR0CJKOj7hvR7dX2UKGgGaAloD0MI5sk1BTIjY0CUhpRSlGgVTegDaBZHQIkwvOQhfSh1fZQoaAZoCWgPQwjOjH40nNorQJSGlFKUaBVNAAFoFkdAiUlaf8MuvnV9lChoBmgJaA9DCGgEG9e/iFhAlIaUUpRoFU3oA2gWR0CJVlz7uUlidX2UKGgGaAloD0MIbEHvjSHNYkCUhpRSlGgVTegDaBZHQIlawmois4l1fZQoaAZoCWgPQwgZOKClKwheQJSGlFKUaBVN6ANoFkdAiV9UdJaq0nV9lChoBmgJaA9DCMnp6/kaCGFAlIaUUpRoFU3oA2gWR0CJaDWf9P1tdX2UKGgGaAloD0MIdk8eFmorW0CUhpRSlGgVTegDaBZHQIl2ikO7QLN1fZQoaAZoCWgPQwhvERjrm5BhQJSGlFKUaBVN6ANoFkdAiXnwRXfZVXV9lChoBmgJaA9DCIVE2sYf5mBAlIaUUpRoFU3oA2gWR0CJkueCkGiYdX2UKGgGaAloD0MIBhIUP8Z6ZECUhpRSlGgVTegDaBZHQImUcSElE7Z1fZQoaAZoCWgPQwiTADW1bJVmQJSGlFKUaBVN6ANoFkdAiZZ71yvLYHV9lChoBmgJaA9DCFN7EW3HQ2VAlIaUUpRoFU3oA2gWR0CJ1fMkhRqHdX2UKGgGaAloD0MI73IR34lNY0CUhpRSlGgVTegDaBZHQInbFAX2ugZ1fZQoaAZoCWgPQwhW1jbFY2JkQJSGlFKUaBVN6ANoFkdAieH4VZcLSnV9lChoBmgJaA9DCEOpvYi2KF5AlIaUUpRoFU3oA2gWR0CJ4l15B1LbdX2UKGgGaAloD0MIDw9h/DROZkCUhpRSlGgVTegDaBZHQInkCagElmh1fZQoaAZoCWgPQwhkAn6NJHkyQJSGlFKUaBVL12gWR0CJ5a8dxQzldX2UKGgGaAloD0MIjV4NUBrBYECUhpRSlGgVTegDaBZHQInvE+JP69F1fZQoaAZoCWgPQwiRmKCGbx03QJSGlFKUaBVL9WgWR0CJ9jBLPD51dX2UKGgGaAloD0MI6+HLRBHfXkCUhpRSlGgVTegDaBZHQIoI0jgQ6IZ1fZQoaAZoCWgPQwijyFpDqQ9dQJSGlFKUaBVN6ANoFkdAihYgsCkoF3V9lChoBmgJaA9DCNsV+mAZGldAlIaUUpRoFU3oA2gWR0CKGwdeY2KmdX2UKGgGaAloD0MI7zuGx/5xYUCUhpRSlGgVTegDaBZHQIogH3cpLEl1fZQoaAZoCWgPQwhkOnR63mxZQJSGlFKUaBVN6ANoFkdAiimyS3b213V9lChoBmgJaA9DCNTuVwE+cmVAlIaUUpRoFU3oA2gWR0CKOXxy4nWrdX2UKGgGaAloD0MIX9Gt13Q8ZkCUhpRSlGgVTegDaBZHQIo9W/SH/Ll1fZQoaAZoCWgPQwjI7Cx6p/NZQJSGlFKUaBVN6ANoFkdAiliPoePq93V9lChoBmgJaA9DCPnaM0uCuGNAlIaUUpRoFU3oA2gWR0CKWuRbKRuCdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eef92e9c89ad8eaca00c8500cd6567f4f79b4adb70e9dc11deb2026c1e93132e
3
+ size 144135
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe3fc418290>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe3fc418320>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe3fc4183b0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe3fc418440>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fe3fc4184d0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fe3fc418560>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe3fc4185f0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fe3fc418680>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe3fc418710>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe3fc4187a0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe3fc418830>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7fe3fc3e57b0>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 507904,
46
+ "_total_timesteps": 500000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1653605597.098445,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAAgPQpvb52cj/uXAe9uZGCvlTOGL1iWoa8AAAAAAAAAAAAoge9SNnSOS8YrDtwzPI8rAfJuzbRr7sAAIA/AACAP83rvr3hPpS6fe1fuTTCwLRfiR07IHZ/OAAAgD8AAIA/TQt4PRSEibpLJke8p9wxM7wtPrpw4GezAACAPwAAgD+Av8k9KYhDuthEvbp29aa2Opg7u6LsFzYAAIA/AACAP3MfLb57BO261siPOrfzxjYRNNI70J6nuQAAgD8AAIA/zcrHvCnIObpYR7+7sQc4ODT1ajpdxXk6AACAPwAAgD9mLIo9cd0auanJSzqeuNm0H8nZu1tDdLkAAIA/AACAP23SY74t3Xw/vr0zvjk0BL9zVJy+frlzPQAAAAAAAAAApmzfPY/+C7p1rvO6YxxnN/2+PTsWLam2AACAPwAAgD8FFYK+15VgPHUynDzgkSq95SwPv+oOdL4AAAAAAACAP1qhoL0pBAG6NH6MuQk50rQQ/3w7eISiOAAAgD8AAIA/AM+0vRTIirr2luk7hNkEvYg6ULsb3U69AAAAAAAAAADAz429hSuxOFGKoLlVfboyri8QO9QHwTgAAIA/AACAP83aAz2PthS6TnLTuvEkp7WhtzW6AL/1OQAAgD8AAIA/GhHzvXs4wrrtCjs+J+reu8+iD70XfQo+AACAPwAAgD+UdJRiLg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gASVchAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIdvusMlPmOsCUhpRSlIwBbJRL94wBdJRHQIZJ0cABDG91fZQoaAZoCWgPQwjhtrbwvI5IwJSGlFKUaBVNIwFoFkdAhmT+6qbSZ3V9lChoBmgJaA9DCHGqtTALBFtAlIaUUpRoFU3oA2gWR0CGdWukk8ifdX2UKGgGaAloD0MI0jk/xXFKXkCUhpRSlGgVTegDaBZHQIaDqTY/Vy51fZQoaAZoCWgPQwg4LXjRVy5gQJSGlFKUaBVN6ANoFkdAhr5aQ/5cknV9lChoBmgJaA9DCH0JFRxek2FAlIaUUpRoFU3oA2gWR0CGxSPwNLDidX2UKGgGaAloD0MIjiEAOPY+U0CUhpRSlGgVTegDaBZHQIbI5hnanJl1fZQoaAZoCWgPQwguHt5zYN1gQJSGlFKUaBVN6ANoFkdAhtaJrULDynV9lChoBmgJaA9DCMTqjzAM82FAlIaUUpRoFU3oA2gWR0CG2Ussg+yJdX2UKGgGaAloD0MIX9BCAkZVXkCUhpRSlGgVTegDaBZHQIbgOUQkHD91fZQoaAZoCWgPQwg57//jhN5eQJSGlFKUaBVN6ANoFkdAhuDDGLk0anV9lChoBmgJaA9DCOyJrgu/w2BAlIaUUpRoFU3oA2gWR0CG5bGQ0XP7dX2UKGgGaAloD0MIaD7nbtcuXUCUhpRSlGgVTegDaBZHQIboMURFqi51fZQoaAZoCWgPQwht4uR+hw5kQJSGlFKUaBVN6ANoFkdAhukFOXVslHV9lChoBmgJaA9DCJTeN752UGJAlIaUUpRoFU3oA2gWR0CG7e2Ifr8jdX2UKGgGaAloD0MIKqp+pXNuY0CUhpRSlGgVTegDaBZHQIbxKzNUwSJ1fZQoaAZoCWgPQwiHhzB+Ggs6QJSGlFKUaBVNBAFoFkdAhveCzkZJkHV9lChoBmgJaA9DCOHSMecZozlAlIaUUpRoFUvYaBZHQIcCvXZoPCl1fZQoaAZoCWgPQwi2LF+X4bFCQJSGlFKUaBVL2WgWR0CHFjzySV4YdX2UKGgGaAloD0MItwiM9Q0eWECUhpRSlGgVTegDaBZHQIcWjEgntv51fZQoaAZoCWgPQwjF5A0w87NXQJSGlFKUaBVN6ANoFkdAhy8nBUJfIHV9lChoBmgJaA9DCOWAXU0e1mJAlIaUUpRoFU3oA2gWR0CHPMDxLCemdX2UKGgGaAloD0MIlpf8T/6YXUCUhpRSlGgVTegDaBZHQIdIznied091fZQoaAZoCWgPQwjshQK2A61iQJSGlFKUaBVN6ANoFkdAh0ziDdxhlXV9lChoBmgJaA9DCI8X0uEhN2ZAlIaUUpRoFU3oA2gWR0CHhrwvQF9sdX2UKGgGaAloD0MIqI5VSs8AYUCUhpRSlGgVTegDaBZHQIeJ10DEFW51fZQoaAZoCWgPQwhZxLDDmBBgQJSGlFKUaBVN6ANoFkdAh5ja42CNCXV9lChoBmgJaA9DCHy2Dg72lhBAlIaUUpRoFUvfaBZHQIebjvqkdmx1fZQoaAZoCWgPQwh4KuCe56VkQJSGlFKUaBVN6ANoFkdAh5+IzeoDPnV9lChoBmgJaA9DCK33G+04kGBAlIaUUpRoFU3oA2gWR0CHn/fkWAPNdX2UKGgGaAloD0MI5kAPte1UYkCUhpRSlGgVTegDaBZHQIekkDjin511fZQoaAZoCWgPQwiX4xWInhpnQJSGlFKUaBVN6ANoFkdAh6cDhUBGQXV9lChoBmgJaA9DCIhLjjulv2FAlIaUUpRoFU3oA2gWR0CHrKHaews5dX2UKGgGaAloD0MI0V0SZ8WIZECUhpRSlGgVTegDaBZHQIewElolD4R1fZQoaAZoCWgPQwihZkgVxcM4QJSGlFKUaBVL3WgWR0CHt0RZlnRLdX2UKGgGaAloD0MIaQJFLGIOVECUhpRSlGgVTegDaBZHQIfC6S1Vo6F1fZQoaAZoCWgPQwgkY7X5f7tBQJSGlFKUaBVL9GgWR0CH0S5GSZBtdX2UKGgGaAloD0MIK6ORzysFXkCUhpRSlGgVTegDaBZHQIfVuf5DZ151fZQoaAZoCWgPQwhLrIxGPhhfQJSGlFKUaBVN6ANoFkdAh9YEF4cFQnV9lChoBmgJaA9DCIts5/upMUxAlIaUUpRoFUvkaBZHQIfXKhg3Lmp1fZQoaAZoCWgPQwhtVRLZB/ElQJSGlFKUaBVL6GgWR0CH5E9du5z6dX2UKGgGaAloD0MI+5KNB9u0YECUhpRSlGgVTegDaBZHQIftSL876pJ1fZQoaAZoCWgPQwjpYP2fwxFfQJSGlFKUaBVN6ANoFkdAh/tKcd5prXV9lChoBmgJaA9DCFfqWRDKGVZAlIaUUpRoFU3oA2gWR0CIC+6nzg/DdX2UKGgGaAloD0MI/n3GhQOLYkCUhpRSlGgVTegDaBZHQIgSRhQWN3p1fZQoaAZoCWgPQwgLfhtivEhIQJSGlFKUaBVL+2gWR0CISR1s+FDfdX2UKGgGaAloD0MIHH433TIgYECUhpRSlGgVTegDaBZHQIhLTNjbzsh1fZQoaAZoCWgPQwg5miMrvwzEv5SGlFKUaBVL+GgWR0CIVe0Jng5zdX2UKGgGaAloD0MIA5SGGoVmY0CUhpRSlGgVTegDaBZHQIhazxd6cAl1fZQoaAZoCWgPQwjFWKZfIkBGQJSGlFKUaBVN6ANoFkdAiGHZq/M4cXV9lChoBmgJaA9DCNGQ8SiVZVtAlIaUUpRoFU3oA2gWR0CIYkj1wo9cdX2UKGgGaAloD0MIEEHV6FWoYECUhpRSlGgVTegDaBZHQIhnTcj7hvR1fZQoaAZoCWgPQwhEp+fdWPhcQJSGlFKUaBVN6ANoFkdAiGoUmUnogXV9lChoBmgJaA9DCAUabOq8C2JAlIaUUpRoFU3oA2gWR0CIcCr/82rGdX2UKGgGaAloD0MIeZJ0zeQLYkCUhpRSlGgVTegDaBZHQIiXQao/A0t1fZQoaAZoCWgPQwi+3CdHgWNkQJSGlFKUaBVN6ANoFkdAiJxZJK8L8nV9lChoBmgJaA9DCINRSZ2AN1pAlIaUUpRoFU3oA2gWR0CInKvgWJrMdX2UKGgGaAloD0MIpONqZNdkYkCUhpRSlGgVTegDaBZHQIid4wVTJhh1fZQoaAZoCWgPQwh/bf30n0NpQJSGlFKUaBVNggFoFkdAiKEbGvOhTXV9lChoBmgJaA9DCMSUSKKXIGNAlIaUUpRoFU3oA2gWR0CIqjkd3jdYdX2UKGgGaAloD0MIOslWl1N0T0CUhpRSlGgVS8loFkdAiLjBp5/smnV9lChoBmgJaA9DCOokW11O/T5AlIaUUpRoFUvqaBZHQIi8JPO6d2B1fZQoaAZoCWgPQwgXuDzWDJJgQJSGlFKUaBVN6ANoFkdAiM9iKaXrt3V9lChoBmgJaA9DCMReKGA7SFxAlIaUUpRoFU3oA2gWR0CI1Y6XBxgidX2UKGgGaAloD0MIrkZ2pWV8XECUhpRSlGgVTegDaBZHQIjXFHH3lCF1fZQoaAZoCWgPQwhcrn5skvFjQJSGlFKUaBVN6ANoFkdAiNkjP4VRDXV9lChoBmgJaA9DCBh7L75o1WJAlIaUUpRoFU3oA2gWR0CJGRJW/8EWdX2UKGgGaAloD0MI+HDJcadMWUCUhpRSlGgVTegDaBZHQIkeC/dqL0l1fZQoaAZoCWgPQwjCL/XzprRhQJSGlFKUaBVN6ANoFkdAiSRVpKzzE3V9lChoBmgJaA9DCDuMSX8vgFhAlIaUUpRoFU3oA2gWR0CJJLaVUuL8dX2UKGgGaAloD0MITDRIwVOYKECUhpRSlGgVS/BoFkdAiSZw+UyHmHV9lChoBmgJaA9DCBR4J58eUldAlIaUUpRoFU3oA2gWR0CJKOj7hvR7dX2UKGgGaAloD0MI5sk1BTIjY0CUhpRSlGgVTegDaBZHQIkwvOQhfSh1fZQoaAZoCWgPQwjOjH40nNorQJSGlFKUaBVNAAFoFkdAiUlaf8MuvnV9lChoBmgJaA9DCGgEG9e/iFhAlIaUUpRoFU3oA2gWR0CJVlz7uUlidX2UKGgGaAloD0MIbEHvjSHNYkCUhpRSlGgVTegDaBZHQIlawmois4l1fZQoaAZoCWgPQwgZOKClKwheQJSGlFKUaBVN6ANoFkdAiV9UdJaq0nV9lChoBmgJaA9DCMnp6/kaCGFAlIaUUpRoFU3oA2gWR0CJaDWf9P1tdX2UKGgGaAloD0MIdk8eFmorW0CUhpRSlGgVTegDaBZHQIl2ikO7QLN1fZQoaAZoCWgPQwhvERjrm5BhQJSGlFKUaBVN6ANoFkdAiXnwRXfZVXV9lChoBmgJaA9DCIVE2sYf5mBAlIaUUpRoFU3oA2gWR0CJkueCkGiYdX2UKGgGaAloD0MIBhIUP8Z6ZECUhpRSlGgVTegDaBZHQImUcSElE7Z1fZQoaAZoCWgPQwiTADW1bJVmQJSGlFKUaBVN6ANoFkdAiZZ71yvLYHV9lChoBmgJaA9DCFN7EW3HQ2VAlIaUUpRoFU3oA2gWR0CJ1fMkhRqHdX2UKGgGaAloD0MI73IR34lNY0CUhpRSlGgVTegDaBZHQInbFAX2ugZ1fZQoaAZoCWgPQwhW1jbFY2JkQJSGlFKUaBVN6ANoFkdAieH4VZcLSnV9lChoBmgJaA9DCEOpvYi2KF5AlIaUUpRoFU3oA2gWR0CJ4l15B1LbdX2UKGgGaAloD0MIDw9h/DROZkCUhpRSlGgVTegDaBZHQInkCagElmh1fZQoaAZoCWgPQwhkAn6NJHkyQJSGlFKUaBVL12gWR0CJ5a8dxQzldX2UKGgGaAloD0MIjV4NUBrBYECUhpRSlGgVTegDaBZHQInvE+JP69F1fZQoaAZoCWgPQwiRmKCGbx03QJSGlFKUaBVL9WgWR0CJ9jBLPD51dX2UKGgGaAloD0MI6+HLRBHfXkCUhpRSlGgVTegDaBZHQIoI0jgQ6IZ1fZQoaAZoCWgPQwijyFpDqQ9dQJSGlFKUaBVN6ANoFkdAihYgsCkoF3V9lChoBmgJaA9DCNsV+mAZGldAlIaUUpRoFU3oA2gWR0CKGwdeY2KmdX2UKGgGaAloD0MI7zuGx/5xYUCUhpRSlGgVTegDaBZHQIogH3cpLEl1fZQoaAZoCWgPQwhkOnR63mxZQJSGlFKUaBVN6ANoFkdAiimyS3b213V9lChoBmgJaA9DCNTuVwE+cmVAlIaUUpRoFU3oA2gWR0CKOXxy4nWrdX2UKGgGaAloD0MIX9Gt13Q8ZkCUhpRSlGgVTegDaBZHQIo9W/SH/Ll1fZQoaAZoCWgPQwjI7Cx6p/NZQJSGlFKUaBVN6ANoFkdAiliPoePq93V9lChoBmgJaA9DCPnaM0uCuGNAlIaUUpRoFU3oA2gWR0CKWuRbKRuCdWUu"
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 124,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6cdef7f13c56ce9a6b284f686d5df99205cf9afa88aedd08d4253c55cb4a8e59
3
+ size 84829
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:823ba59d448d8f0be0324aa0f7a5b2af61b11dbd163b534a811e2efb03674a90
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.5.0
4
+ PyTorch: 1.11.0+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ee7f5254433bb6f463181099543566113430b3fc200f481170a032112bb6af58
3
+ size 256265
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 214.7447189178036, "std_reward": 27.574418862553024, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-26T23:08:11.466246"}