|
|
|
import argparse |
|
import copy |
|
import os |
|
import random |
|
import time |
|
from distutils.util import strtobool |
|
from typing import Callable |
|
|
|
import gymnasium as gym |
|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
import torch.optim as optim |
|
from torch.distributions.normal import Normal |
|
from torch.utils.tensorboard import SummaryWriter |
|
|
|
|
|
def parse_args(): |
|
|
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--exp-name", type=str, default=os.path.basename(__file__).rstrip(".py"), |
|
help="the name of this experiment") |
|
parser.add_argument("--seed", type=int, default=1, |
|
help="seed of the experiment") |
|
parser.add_argument("--torch-deterministic", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True, |
|
help="if toggled, `torch.backends.cudnn.deterministic=False`") |
|
parser.add_argument("--cuda", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True, |
|
help="if toggled, cuda will be enabled by default") |
|
parser.add_argument("--track", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True, |
|
help="if toggled, this experiment will be tracked with Weights and Biases") |
|
parser.add_argument("--wandb-project-name", type=str, default="cleanRL", |
|
help="the wandb's project name") |
|
parser.add_argument("--wandb-entity", type=str, default=None, |
|
help="the entity (team) of wandb's project") |
|
parser.add_argument("--capture-video", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True, |
|
help="whether to capture videos of the agent performances (check out `videos` folder)") |
|
parser.add_argument("--save-model", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True, |
|
help="whether to save model into the `runs/{run_name}` folder") |
|
parser.add_argument("--upload-model", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True, |
|
help="whether to upload the saved model to huggingface") |
|
parser.add_argument("--hf-entity", type=str, default="", |
|
help="the user or org name of the model repository from the Hugging Face Hub") |
|
|
|
|
|
parser.add_argument("--env-id", type=str, default="HalfCheetah-v4", |
|
help="the id of the environment") |
|
parser.add_argument("--total-timesteps", type=int, default=1000000, |
|
help="total timesteps of the experiments") |
|
parser.add_argument("--learning-rate", type=float, default=3e-4, |
|
help="the learning rate of the optimizer") |
|
parser.add_argument("--num-envs", type=int, default=1, |
|
help="the number of parallel game environments") |
|
parser.add_argument("--num-steps", type=int, default=2048, |
|
help="the number of steps to run in each environment per policy rollout") |
|
parser.add_argument("--anneal-lr", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True, |
|
help="Toggle learning rate annealing for policy and value networks") |
|
parser.add_argument("--gamma", type=float, default=0.99, |
|
help="the discount factor gamma") |
|
parser.add_argument("--gae-lambda", type=float, default=0.95, |
|
help="the lambda for the general advantage estimation") |
|
parser.add_argument("--num-minibatches", type=int, default=32, |
|
help="the number of mini-batches") |
|
parser.add_argument("--update-epochs", type=int, default=10, |
|
help="the K epochs to update the policy") |
|
parser.add_argument("--norm-adv", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True, |
|
help="Toggles advantages normalization") |
|
parser.add_argument("--clip-coef", type=float, default=0.2, |
|
help="the surrogate clipping coefficient") |
|
parser.add_argument("--clip-vloss", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True, |
|
help="Toggles whether or not to use a clipped loss for the value function, as per the paper.") |
|
parser.add_argument("--ent-coef", type=float, default=0.0, |
|
help="coefficient of the entropy") |
|
parser.add_argument("--vf-coef", type=float, default=0.5, |
|
help="coefficient of the value function") |
|
parser.add_argument("--max-grad-norm", type=float, default=0.5, |
|
help="the maximum norm for the gradient clipping") |
|
parser.add_argument("--target-kl", type=float, default=None, |
|
help="the target KL divergence threshold") |
|
args = parser.parse_args() |
|
args.batch_size = int(args.num_envs * args.num_steps) |
|
args.minibatch_size = int(args.batch_size // args.num_minibatches) |
|
|
|
return args |
|
|
|
|
|
|
|
class RunningMeanStd(nn.Module): |
|
def __init__(self, epsilon=1e-4, shape=()): |
|
super().__init__() |
|
self.register_buffer("mean", torch.zeros(shape, dtype=torch.float64)) |
|
self.register_buffer("var", torch.ones(shape, dtype=torch.float64)) |
|
self.register_buffer("count", torch.tensor(epsilon, dtype=torch.float64)) |
|
|
|
def update(self, x): |
|
x = torch.as_tensor(x, dtype=torch.float64).to(self.mean.device) |
|
batch_mean = torch.mean(x, dim=0).to(self.mean.device) |
|
batch_var = torch.var(x, dim=0, unbiased=False).to(self.mean.device) |
|
batch_count = x.shape[0] |
|
|
|
self.mean, self.var, self.count = update_mean_var_count_from_moments( |
|
self.mean, self.var, self.count, batch_mean, batch_var, batch_count |
|
) |
|
|
|
|
|
def update_mean_var_count_from_moments(mean, var, count, batch_mean, batch_var, batch_count): |
|
delta = batch_mean - mean |
|
tot_count = count + batch_count |
|
|
|
new_mean = mean + delta * batch_count / tot_count |
|
m_a = var * count |
|
m_b = batch_var * batch_count |
|
M2 = m_a + m_b + torch.square(delta) * count * batch_count / tot_count |
|
new_var = M2 / tot_count |
|
new_count = tot_count |
|
|
|
return new_mean, new_var, new_count |
|
|
|
|
|
class NormalizeObservation(gym.Wrapper, gym.utils.RecordConstructorArgs): |
|
def __init__(self, env: gym.Env, epsilon: float = 1e-8): |
|
gym.utils.RecordConstructorArgs.__init__(self, epsilon=epsilon) |
|
gym.Wrapper.__init__(self, env) |
|
|
|
try: |
|
self.num_envs = self.get_wrapper_attr("num_envs") |
|
self.is_vector_env = self.get_wrapper_attr("is_vector_env") |
|
except AttributeError: |
|
self.num_envs = 1 |
|
self.is_vector_env = False |
|
|
|
if self.is_vector_env: |
|
self.obs_rms = RunningMeanStd(shape=self.single_observation_space.shape) |
|
else: |
|
self.obs_rms = RunningMeanStd(shape=self.observation_space.shape) |
|
self.epsilon = epsilon |
|
|
|
self.enable = True |
|
self.freeze = False |
|
|
|
def step(self, action): |
|
obs, rews, terminateds, truncateds, infos = self.env.step(action) |
|
if self.is_vector_env: |
|
obs = self.normalize(obs) |
|
else: |
|
obs = self.normalize(np.array([obs]))[0] |
|
return obs, rews, terminateds, truncateds, infos |
|
|
|
def reset(self, **kwargs): |
|
obs, info = self.env.reset(**kwargs) |
|
|
|
if self.is_vector_env: |
|
return self.normalize(obs), info |
|
else: |
|
return self.normalize(np.array([obs]))[0], info |
|
|
|
def normalize(self, obs): |
|
if not self.freeze: |
|
self.obs_rms.update(obs) |
|
if self.enable: |
|
return (obs - self.obs_rms.mean.cpu().numpy()) / np.sqrt(self.obs_rms.var.cpu().numpy() + self.epsilon) |
|
return obs |
|
|
|
|
|
class NormalizeReward(gym.core.Wrapper, gym.utils.RecordConstructorArgs): |
|
def __init__( |
|
self, |
|
env: gym.Env, |
|
gamma: float = 0.99, |
|
epsilon: float = 1e-8, |
|
): |
|
gym.utils.RecordConstructorArgs.__init__(self, gamma=gamma, epsilon=epsilon) |
|
gym.Wrapper.__init__(self, env) |
|
|
|
try: |
|
self.num_envs = self.get_wrapper_attr("num_envs") |
|
self.is_vector_env = self.get_wrapper_attr("is_vector_env") |
|
except AttributeError: |
|
self.num_envs = 1 |
|
self.is_vector_env = False |
|
|
|
self.return_rms = RunningMeanStd(shape=()) |
|
self.returns = np.zeros(self.num_envs) |
|
self.gamma = gamma |
|
self.epsilon = epsilon |
|
|
|
self.enable = True |
|
self.freeze = False |
|
|
|
def step(self, action): |
|
obs, rews, terminateds, truncateds, infos = self.env.step(action) |
|
if not self.is_vector_env: |
|
rews = np.array([rews]) |
|
self.returns = self.returns * self.gamma * (1 - terminateds) + rews |
|
rews = self.normalize(rews) |
|
if not self.is_vector_env: |
|
rews = rews[0] |
|
return obs, rews, terminateds, truncateds, infos |
|
|
|
def reset(self, **kwargs): |
|
|
|
return self.env.reset(**kwargs) |
|
|
|
def normalize(self, rews): |
|
if not self.freeze: |
|
self.return_rms.update(self.returns) |
|
if self.enable: |
|
return rews / np.sqrt(self.return_rms.var.cpu().numpy() + self.epsilon) |
|
return rews |
|
|
|
def get_returns(self): |
|
return self.returns |
|
|
|
|
|
def evaluate( |
|
model_path: str, |
|
make_env: Callable, |
|
env_id: str, |
|
eval_episodes: int, |
|
run_name: str, |
|
Model: torch.nn.Module, |
|
device: torch.device = torch.device("cpu"), |
|
capture_video: bool = True, |
|
): |
|
envs = gym.vector.SyncVectorEnv([make_env(env_id, 0, capture_video, run_name)]) |
|
agent = Model(envs).to(device) |
|
agent.load_state_dict(torch.load(model_path, map_location=device)) |
|
agent.eval() |
|
envs = gym.vector.SyncVectorEnv([make_env(env_id, 0, capture_video, run_name, agent.obs_rms)]) |
|
|
|
obs, _ = envs.reset() |
|
episodic_returns = [] |
|
while len(episodic_returns) < eval_episodes: |
|
actions, _, _, _ = agent.get_action_and_value(torch.Tensor(obs).to(device)) |
|
next_obs, _, _, _, infos = envs.step(actions.cpu().numpy()) |
|
if "final_info" in infos: |
|
for info in infos["final_info"]: |
|
if "episode" not in info: |
|
continue |
|
print(f"eval_episode={len(episodic_returns)}, episodic_return={info['episode']['r']}") |
|
episodic_returns += [info["episode"]["r"]] |
|
obs = next_obs |
|
|
|
return episodic_returns |
|
|
|
|
|
def make_env(env_id, idx, capture_video, run_name, gamma): |
|
def thunk(): |
|
if capture_video: |
|
env = gym.make(env_id, render_mode="rgb_array") |
|
else: |
|
env = gym.make(env_id) |
|
env = gym.wrappers.FlattenObservation(env) |
|
env = gym.wrappers.RecordEpisodeStatistics(env) |
|
if capture_video: |
|
if idx == 0: |
|
env = gym.wrappers.RecordVideo(env, f"videos/{run_name}") |
|
env = gym.wrappers.ClipAction(env) |
|
env = NormalizeObservation(env) |
|
env = gym.wrappers.TransformObservation(env, lambda obs: np.clip(obs, -10, 10)) |
|
env = NormalizeReward(env, gamma=gamma) |
|
env = gym.wrappers.TransformReward(env, lambda reward: np.clip(reward, -10, 10)) |
|
return env |
|
|
|
return thunk |
|
|
|
|
|
def make_eval_env(env_id, idx, capture_video, run_name, obs_rms=None): |
|
def thunk(): |
|
if capture_video: |
|
env = gym.make(env_id, render_mode="rgb_array") |
|
else: |
|
env = gym.make(env_id) |
|
env = gym.wrappers.FlattenObservation(env) |
|
env = gym.wrappers.RecordEpisodeStatistics(env) |
|
if capture_video: |
|
if idx == 0: |
|
env = gym.wrappers.RecordVideo(env, f"videos/{run_name}") |
|
env = gym.wrappers.ClipAction(env) |
|
env = NormalizeObservation(env) |
|
if obs_rms is not None: |
|
env.obs_rms = copy.deepcopy(obs_rms) |
|
env.freeze = True |
|
env = gym.wrappers.TransformObservation(env, lambda obs: np.clip(obs, -10, 10)) |
|
return env |
|
|
|
return thunk |
|
|
|
|
|
def get_rms(env): |
|
obs_rms, return_rms = None, None |
|
env_point = env |
|
while hasattr(env_point, "env"): |
|
if isinstance(env_point, NormalizeObservation): |
|
obs_rms = copy.deepcopy(env_point.obs_rms) |
|
break |
|
env_point = env_point.env |
|
else: |
|
raise RuntimeError("can't find NormalizeObservation") |
|
|
|
env_point = env |
|
while hasattr(env_point, "env"): |
|
if isinstance(env_point, NormalizeReward): |
|
return_rms = copy.deepcopy(env_point.return_rms) |
|
break |
|
env_point = env_point.env |
|
else: |
|
raise RuntimeError("can't find NormalizeReward") |
|
|
|
return obs_rms, return_rms |
|
|
|
|
|
def layer_init(layer, std=np.sqrt(2), bias_const=0.0): |
|
torch.nn.init.orthogonal_(layer.weight, std) |
|
torch.nn.init.constant_(layer.bias, bias_const) |
|
return layer |
|
|
|
|
|
class Agent(nn.Module): |
|
def __init__(self, envs): |
|
super().__init__() |
|
self.critic = nn.Sequential( |
|
layer_init(nn.Linear(np.array(envs.single_observation_space.shape).prod(), 64)), |
|
nn.Tanh(), |
|
layer_init(nn.Linear(64, 64)), |
|
nn.Tanh(), |
|
layer_init(nn.Linear(64, 1), std=1.0), |
|
) |
|
self.actor_mean = nn.Sequential( |
|
layer_init(nn.Linear(np.array(envs.single_observation_space.shape).prod(), 64)), |
|
nn.Tanh(), |
|
layer_init(nn.Linear(64, 64)), |
|
nn.Tanh(), |
|
layer_init(nn.Linear(64, np.prod(envs.single_action_space.shape)), std=0.01), |
|
) |
|
self.actor_logstd = nn.Parameter(torch.zeros(1, np.prod(envs.single_action_space.shape))) |
|
self.obs_rms = RunningMeanStd(shape=envs.single_observation_space.shape) |
|
|
|
def get_value(self, x): |
|
return self.critic(x) |
|
|
|
def get_action_and_value(self, x, action=None): |
|
action_mean = self.actor_mean(x) |
|
action_logstd = self.actor_logstd.expand_as(action_mean) |
|
action_std = torch.exp(action_logstd) |
|
probs = Normal(action_mean, action_std) |
|
if action is None: |
|
action = probs.sample() |
|
return action, probs.log_prob(action).sum(1), probs.entropy().sum(1), self.critic(x) |
|
|
|
|
|
if __name__ == "__main__": |
|
args = parse_args() |
|
run_name = f"{args.env_id}__{args.exp_name}__{args.seed}__{int(time.time())}" |
|
if args.track: |
|
import wandb |
|
|
|
wandb.init( |
|
project=args.wandb_project_name, |
|
entity=args.wandb_entity, |
|
sync_tensorboard=True, |
|
config=vars(args), |
|
name=run_name, |
|
monitor_gym=True, |
|
save_code=True, |
|
) |
|
writer = SummaryWriter(f"runs/{run_name}") |
|
writer.add_text( |
|
"hyperparameters", |
|
"|param|value|\n|-|-|\n%s" % ("\n".join([f"|{key}|{value}|" for key, value in vars(args).items()])), |
|
) |
|
|
|
|
|
random.seed(args.seed) |
|
np.random.seed(args.seed) |
|
torch.manual_seed(args.seed) |
|
torch.backends.cudnn.deterministic = args.torch_deterministic |
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() and args.cuda else "cpu") |
|
|
|
|
|
envs = gym.vector.SyncVectorEnv( |
|
[make_env(args.env_id, i, args.capture_video, run_name, args.gamma) for i in range(args.num_envs)] |
|
) |
|
assert isinstance(envs.single_action_space, gym.spaces.Box), "only continuous action space is supported" |
|
|
|
agent = Agent(envs).to(device) |
|
optimizer = optim.Adam(agent.parameters(), lr=args.learning_rate, eps=1e-5) |
|
|
|
|
|
obs = torch.zeros((args.num_steps, args.num_envs) + envs.single_observation_space.shape).to(device) |
|
actions = torch.zeros((args.num_steps, args.num_envs) + envs.single_action_space.shape).to(device) |
|
logprobs = torch.zeros((args.num_steps, args.num_envs)).to(device) |
|
rewards = torch.zeros((args.num_steps, args.num_envs)).to(device) |
|
dones = torch.zeros((args.num_steps, args.num_envs)).to(device) |
|
values = torch.zeros((args.num_steps, args.num_envs)).to(device) |
|
|
|
|
|
global_step = 0 |
|
start_time = time.time() |
|
next_obs, _ = envs.reset(seed=args.seed) |
|
next_obs = torch.Tensor(next_obs).to(device) |
|
next_done = torch.zeros(args.num_envs).to(device) |
|
num_updates = args.total_timesteps // args.batch_size |
|
|
|
for update in range(1, num_updates + 1): |
|
|
|
if args.anneal_lr: |
|
frac = 1.0 - (update - 1.0) / num_updates |
|
lrnow = frac * args.learning_rate |
|
optimizer.param_groups[0]["lr"] = lrnow |
|
|
|
for step in range(0, args.num_steps): |
|
global_step += 1 * args.num_envs |
|
obs[step] = next_obs |
|
dones[step] = next_done |
|
|
|
|
|
with torch.no_grad(): |
|
action, logprob, _, value = agent.get_action_and_value(next_obs) |
|
values[step] = value.flatten() |
|
actions[step] = action |
|
logprobs[step] = logprob |
|
|
|
|
|
next_obs, reward, terminations, truncations, infos = envs.step(action.cpu().numpy()) |
|
done = np.logical_or(terminations, truncations) |
|
rewards[step] = torch.tensor(reward).to(device).view(-1) |
|
next_obs, next_done = torch.Tensor(next_obs).to(device), torch.Tensor(done).to(device) |
|
|
|
|
|
for idx, trunc in enumerate(truncations): |
|
if trunc and not terminations[idx]: |
|
real_next_obs = infos["final_observation"][idx] |
|
with torch.no_grad(): |
|
terminal_value = agent.get_value(torch.Tensor(real_next_obs).to(device)).reshape(1, -1)[0][0] |
|
rewards[step][idx] += args.gamma * terminal_value |
|
|
|
|
|
if "final_info" not in infos: |
|
continue |
|
|
|
for info in infos["final_info"]: |
|
|
|
if info is None: |
|
continue |
|
print(f"global_step={global_step}, episodic_return={info['episode']['r']}") |
|
writer.add_scalar("charts/episodic_return", info["episode"]["r"], global_step) |
|
writer.add_scalar("charts/episodic_length", info["episode"]["l"], global_step) |
|
|
|
|
|
with torch.no_grad(): |
|
next_value = agent.get_value(next_obs).reshape(1, -1) |
|
advantages = torch.zeros_like(rewards).to(device) |
|
lastgaelam = 0 |
|
for t in reversed(range(args.num_steps)): |
|
if t == args.num_steps - 1: |
|
nextnonterminal = 1.0 - next_done |
|
nextvalues = next_value |
|
else: |
|
nextnonterminal = 1.0 - dones[t + 1] |
|
nextvalues = values[t + 1] |
|
delta = rewards[t] + args.gamma * nextvalues * nextnonterminal - values[t] |
|
advantages[t] = lastgaelam = delta + args.gamma * args.gae_lambda * nextnonterminal * lastgaelam |
|
returns = advantages + values |
|
|
|
|
|
b_obs = obs.reshape((-1,) + envs.single_observation_space.shape) |
|
b_logprobs = logprobs.reshape(-1) |
|
b_actions = actions.reshape((-1,) + envs.single_action_space.shape) |
|
b_advantages = advantages.reshape(-1) |
|
b_returns = returns.reshape(-1) |
|
b_values = values.reshape(-1) |
|
|
|
|
|
b_inds = np.arange(args.batch_size) |
|
clipfracs = [] |
|
for epoch in range(args.update_epochs): |
|
np.random.shuffle(b_inds) |
|
for start in range(0, args.batch_size, args.minibatch_size): |
|
end = start + args.minibatch_size |
|
mb_inds = b_inds[start:end] |
|
|
|
_, newlogprob, entropy, newvalue = agent.get_action_and_value(b_obs[mb_inds], b_actions[mb_inds]) |
|
logratio = newlogprob - b_logprobs[mb_inds] |
|
ratio = logratio.exp() |
|
|
|
with torch.no_grad(): |
|
|
|
old_approx_kl = (-logratio).mean() |
|
approx_kl = ((ratio - 1) - logratio).mean() |
|
clipfracs += [((ratio - 1.0).abs() > args.clip_coef).float().mean().item()] |
|
|
|
mb_advantages = b_advantages[mb_inds] |
|
if args.norm_adv: |
|
mb_advantages = (mb_advantages - mb_advantages.mean()) / (mb_advantages.std() + 1e-8) |
|
|
|
|
|
pg_loss1 = -mb_advantages * ratio |
|
pg_loss2 = -mb_advantages * torch.clamp(ratio, 1 - args.clip_coef, 1 + args.clip_coef) |
|
pg_loss = torch.max(pg_loss1, pg_loss2).mean() |
|
|
|
|
|
newvalue = newvalue.view(-1) |
|
if args.clip_vloss: |
|
v_loss_unclipped = (newvalue - b_returns[mb_inds]) ** 2 |
|
v_clipped = b_values[mb_inds] + torch.clamp( |
|
newvalue - b_values[mb_inds], |
|
-args.clip_coef, |
|
args.clip_coef, |
|
) |
|
v_loss_clipped = (v_clipped - b_returns[mb_inds]) ** 2 |
|
v_loss_max = torch.max(v_loss_unclipped, v_loss_clipped) |
|
v_loss = 0.5 * v_loss_max.mean() |
|
else: |
|
v_loss = 0.5 * ((newvalue - b_returns[mb_inds]) ** 2).mean() |
|
|
|
entropy_loss = entropy.mean() |
|
loss = pg_loss - args.ent_coef * entropy_loss + v_loss * args.vf_coef |
|
|
|
optimizer.zero_grad() |
|
loss.backward() |
|
nn.utils.clip_grad_norm_(agent.parameters(), args.max_grad_norm) |
|
optimizer.step() |
|
|
|
if args.target_kl is not None: |
|
if approx_kl > args.target_kl: |
|
break |
|
|
|
y_pred, y_true = b_values.cpu().numpy(), b_returns.cpu().numpy() |
|
var_y = np.var(y_true) |
|
explained_var = np.nan if var_y == 0 else 1 - np.var(y_true - y_pred) / var_y |
|
|
|
|
|
writer.add_scalar("charts/learning_rate", optimizer.param_groups[0]["lr"], global_step) |
|
writer.add_scalar("losses/value_loss", v_loss.item(), global_step) |
|
writer.add_scalar("losses/policy_loss", pg_loss.item(), global_step) |
|
writer.add_scalar("losses/entropy", entropy_loss.item(), global_step) |
|
writer.add_scalar("losses/old_approx_kl", old_approx_kl.item(), global_step) |
|
writer.add_scalar("losses/approx_kl", approx_kl.item(), global_step) |
|
writer.add_scalar("losses/clipfrac", np.mean(clipfracs), global_step) |
|
writer.add_scalar("losses/explained_variance", explained_var, global_step) |
|
print("SPS:", int(global_step / (time.time() - start_time))) |
|
writer.add_scalar("charts/SPS", int(global_step / (time.time() - start_time)), global_step) |
|
|
|
if args.save_model: |
|
agent.obs_rms = copy.deepcopy(get_rms(envs.envs[0])[0]) |
|
model_path = f"runs/{run_name}/{args.exp_name}.cleanrl_model" |
|
torch.save(agent.state_dict(), model_path) |
|
print(f"model saved to {model_path}") |
|
|
|
episodic_returns = evaluate( |
|
model_path, |
|
make_eval_env, |
|
args.env_id, |
|
eval_episodes=10, |
|
run_name=f"{run_name}-eval", |
|
Model=Agent, |
|
device=device, |
|
) |
|
for idx, episodic_return in enumerate(episodic_returns): |
|
writer.add_scalar("eval/episodic_return", episodic_return, idx) |
|
|
|
if args.upload_model: |
|
from cleanrl_utils.huggingface import push_to_hub |
|
|
|
repo_name = f"{args.env_id}-{args.exp_name}-seed{args.seed}" |
|
repo_id = f"{args.hf_entity}/{repo_name}" if args.hf_entity else repo_name |
|
push_to_hub(args, episodic_returns, repo_id, "PPO", f"runs/{run_name}", f"videos/{run_name}-eval") |
|
|
|
envs.close() |
|
writer.close() |
|
|