Upload coreml_example.py
Browse files- coreml_example.py +214 -0
coreml_example.py
ADDED
@@ -0,0 +1,214 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import time
|
2 |
+
import math
|
3 |
+
import numpy as np
|
4 |
+
from argparse import ArgumentParser
|
5 |
+
from transformers import AutoTokenizer
|
6 |
+
from dotenv import load_dotenv
|
7 |
+
import os
|
8 |
+
|
9 |
+
load_dotenv()
|
10 |
+
|
11 |
+
# tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-0.5B")
|
12 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
13 |
+
"meta-llama/Llama-3.2-1B-Instruct", token=os.environ["HF_TOKEN"]
|
14 |
+
)
|
15 |
+
|
16 |
+
parser = ArgumentParser()
|
17 |
+
parser.add_argument("--model_path_emb", "--model-path-emb", required=True)
|
18 |
+
parser.add_argument("--model_path_mf", "--model-path-mf", required=True)
|
19 |
+
# parser.add_argument("--model_path_1", "--model-path-1", required=True)
|
20 |
+
# parser.add_argument("--model_path_40", "--model-path-40", required=True)
|
21 |
+
parser.add_argument("--model_path_head", "--model-path-head", required=True)
|
22 |
+
parser.add_argument("--prompt", "-p", required=True, type=str)
|
23 |
+
parser.add_argument("--max-tokens", "--max_tokens", type=int, default=100)
|
24 |
+
parser.add_argument("--min_p", "--min-p", type=float, default=0.3)
|
25 |
+
parser.add_argument("--temp", type=float, default=1.0)
|
26 |
+
args = parser.parse_args()
|
27 |
+
|
28 |
+
import coremltools as ct
|
29 |
+
|
30 |
+
print("Loading models...")
|
31 |
+
|
32 |
+
cu = ct.ComputeUnit.CPU_AND_NE
|
33 |
+
|
34 |
+
|
35 |
+
def load_model(path, fname=None):
|
36 |
+
if "mlmodelc" in path:
|
37 |
+
return ct.models.CompiledMLModel(path, cu, fname)
|
38 |
+
else:
|
39 |
+
return ct.models.MLModel(path, cu, function_name=fname)
|
40 |
+
|
41 |
+
|
42 |
+
emb_model = load_model(args.model_path_emb)
|
43 |
+
model_1 = load_model(args.model_path_mf, "length_1")
|
44 |
+
model_40 = load_model(args.model_path_mf, "length_40")
|
45 |
+
model_head = load_model(args.model_path_head)
|
46 |
+
|
47 |
+
# if args.model_path.rstrip("/").endswith(".mlpackage"):
|
48 |
+
# mf_model_1 = ct.models.MLModel(
|
49 |
+
# args.model_path,
|
50 |
+
# compute_units=ct.ComputeUnit.CPU_AND_NE,
|
51 |
+
# function_name="length_1",
|
52 |
+
# )
|
53 |
+
# mf_model_64 = ct.models.MLModel(
|
54 |
+
# args.model_path,
|
55 |
+
# compute_units=ct.ComputeUnit.CPU_AND_NE,
|
56 |
+
# function_name="length_64",
|
57 |
+
# )
|
58 |
+
# else:
|
59 |
+
# mf_model_1 = ct.models.CompiledMLModel(
|
60 |
+
# args.model_path,
|
61 |
+
# compute_units=ct.ComputeUnit.CPU_AND_NE,
|
62 |
+
# function_name="length_1",
|
63 |
+
# )
|
64 |
+
# mf_model_64 = ct.models.CompiledMLModel(
|
65 |
+
# args.model_path,
|
66 |
+
# compute_units=ct.ComputeUnit.CPU_AND_NE,
|
67 |
+
# function_name="length_64",
|
68 |
+
# )
|
69 |
+
|
70 |
+
# mf_model_emb = ct.models.MLModel(
|
71 |
+
# # args.model_path_emb,
|
72 |
+
# "./Llama-3.2-1B-EMB-16Bits.mlpackage",
|
73 |
+
# compute_units=ct.ComputeUnit.CPU_AND_NE,
|
74 |
+
# # function_name="length_64",
|
75 |
+
# )
|
76 |
+
# mf_model_mf = ct.models.MLModel(
|
77 |
+
# # args.model_path_1,
|
78 |
+
# "./Llama-3.2-1B-4bits-MF.mlpackage/",
|
79 |
+
# compute_units=ct.ComputeUnit.CPU_AND_NE,
|
80 |
+
# # function_name="length_64",
|
81 |
+
# )
|
82 |
+
# mf_model_40 = ct.models.MLModel(
|
83 |
+
# # args.model_path_40,
|
84 |
+
# "./Llama-3.2-1B-4bits-CTX-40.mlpackage",
|
85 |
+
# compute_units=ct.ComputeUnit.CPU_AND_NE,
|
86 |
+
# # function_name="length_64",
|
87 |
+
# )
|
88 |
+
# head = ct.models.MLModel(
|
89 |
+
# # args.model_path_head,
|
90 |
+
# "./Llama-3.2-1B-HEAD-6Bits.mlpackage",
|
91 |
+
# compute_units=ct.ComputeUnit.CPU_AND_NE,
|
92 |
+
# # function_name="length_64",
|
93 |
+
# )
|
94 |
+
|
95 |
+
|
96 |
+
def save_compiled(model):
|
97 |
+
from shutil import copytree
|
98 |
+
|
99 |
+
compiled_model_path = model.get_compiled_model_path()
|
100 |
+
copytree(
|
101 |
+
compiled_model_path,
|
102 |
+
model.package_path.replace(".mlpackage", ".mlmodelc"),
|
103 |
+
dirs_exist_ok=True,
|
104 |
+
)
|
105 |
+
|
106 |
+
|
107 |
+
def min_p_sample(logits, min_p, temp):
|
108 |
+
# logits = logits.astype(np.float16)
|
109 |
+
max_ = np.max(logits * (1 / temp), axis=1, keepdims=True)
|
110 |
+
logits = logits - max_
|
111 |
+
logits = np.exp(logits)
|
112 |
+
logits[logits < min_p] = 0
|
113 |
+
# logits = logits.astype(np.float32)
|
114 |
+
logits = np.cumsum(logits, axis=1)
|
115 |
+
sample = np.random.uniform(high=logits[:, -1:])
|
116 |
+
sample = np.argmax(logits > sample, axis=1).astype(np.int32)
|
117 |
+
return sample
|
118 |
+
|
119 |
+
|
120 |
+
def build_causal_mask(seq_length, start, size, end):
|
121 |
+
mask = np.full((1, 1, size, seq_length), np.array(-np.inf, dtype=np.float16))
|
122 |
+
i, h, j, k = np.indices(mask.shape)
|
123 |
+
mask[((k <= (j + start)) & (j < end)) | ((j >= end) & (k == 0))] = (
|
124 |
+
0 # fill first columns with ones to prevent softmax division by 0
|
125 |
+
)
|
126 |
+
return mask
|
127 |
+
|
128 |
+
|
129 |
+
if tokenizer.pad_token is None:
|
130 |
+
tokenizer.pad_token = tokenizer.eos_token
|
131 |
+
|
132 |
+
mask = build_causal_mask(512, 0, 512, 512)
|
133 |
+
|
134 |
+
max_length = 40
|
135 |
+
# length = len(tokenizer(args.prompt)["input_ids"])
|
136 |
+
prompt = [{"role": "user", "content": args.prompt}]
|
137 |
+
length = len(tokenizer.apply_chat_template(prompt, add_generation_prompt=True))
|
138 |
+
print("Prompt length:", length)
|
139 |
+
input_ids = tokenizer.apply_chat_template(
|
140 |
+
prompt,
|
141 |
+
return_tensors="np",
|
142 |
+
padding=True,
|
143 |
+
# max_length=max_length,
|
144 |
+
return_dict=True,
|
145 |
+
add_generation_prompt=True,
|
146 |
+
tokenizer_kwargs={
|
147 |
+
# "padding": True,
|
148 |
+
"pad_to_multiple_of": max_length,
|
149 |
+
},
|
150 |
+
)["input_ids"].astype(np.int32)
|
151 |
+
# input_ids = tokenizer(
|
152 |
+
# args.prompt,
|
153 |
+
# return_tensors="np",
|
154 |
+
# padding="max_length",
|
155 |
+
# max_length=max_length,
|
156 |
+
# )["input_ids"].astype(np.int32)
|
157 |
+
print("Prompt:\n", tokenizer.decode(input_ids[0]))
|
158 |
+
state = model_40.make_state()
|
159 |
+
start = time.time()
|
160 |
+
for i in range(math.ceil(length / max_length)):
|
161 |
+
input_embs = emb_model.predict(
|
162 |
+
{"input_ids": input_ids[:, i * max_length : (i + 1) * max_length]}
|
163 |
+
)["input_embeddings_channels_first"].astype(np.float16)
|
164 |
+
pred = model_40.predict(
|
165 |
+
{
|
166 |
+
"input_ids": input_embs,
|
167 |
+
"query_pos1": np.array([i * max_length], dtype=np.int32),
|
168 |
+
"mask": mask[:, :, i * max_length : (i + 1) * max_length],
|
169 |
+
# "indices": np.array([0], dtype=np.int32),
|
170 |
+
"indices": np.arange(i * max_length, (i + 1) * max_length, dtype=np.int32),
|
171 |
+
},
|
172 |
+
state,
|
173 |
+
)
|
174 |
+
prompt_time = time.time() - start
|
175 |
+
pred = model_head.predict(
|
176 |
+
{"hidden_states": pred["final_norm_rmsnorm"][..., [length % max_length - 1]].astype(np.float16)}
|
177 |
+
)
|
178 |
+
# input_ids = pred["logits"][..., length - 1].argmax(1, keepdims=True).astype(np.int32)
|
179 |
+
# logits = pred["logits"][..., [length - 1]]
|
180 |
+
logits = pred["concat_0"]
|
181 |
+
input_ids = min_p_sample(logits, args.min_p, args.temp)
|
182 |
+
print("Generated:")
|
183 |
+
print(tokenizer.decode(input_ids[0]), end="", flush=True)
|
184 |
+
start = time.time()
|
185 |
+
for i in range(args.max_tokens):
|
186 |
+
input_embs = emb_model.predict({"input_ids": input_ids})[
|
187 |
+
"input_embeddings_channels_first"
|
188 |
+
].astype(np.float16)
|
189 |
+
pred = model_1.predict(
|
190 |
+
{
|
191 |
+
"input_ids": input_embs,
|
192 |
+
"query_pos1": np.array([i + length], dtype=np.int32),
|
193 |
+
"mask": mask[:, :, [i + length]],
|
194 |
+
"indices": np.array([i + length], dtype=np.int32),
|
195 |
+
},
|
196 |
+
state,
|
197 |
+
)
|
198 |
+
pred = model_head.predict(
|
199 |
+
{"hidden_states": pred["final_norm_rmsnorm"].astype(np.float16)}
|
200 |
+
)
|
201 |
+
# input_ids = min_p_sample(pred["logits"], args.min_p, args.temp)
|
202 |
+
input_ids = min_p_sample(pred["concat_0"], args.min_p, args.temp)
|
203 |
+
# input_ids = pred["logits"].argmax(1).astype(np.int32)
|
204 |
+
print(tokenizer.decode(input_ids[0]), end="", flush=True)
|
205 |
+
print("", "=" * 10)
|
206 |
+
generation_time = time.time() - start
|
207 |
+
|
208 |
+
print(
|
209 |
+
"Prompt:",
|
210 |
+
length / prompt_time,
|
211 |
+
"tokens-per-sec",
|
212 |
+
f"({math.ceil(length / max_length) * max_length / prompt_time} considering the processed padding)",
|
213 |
+
)
|
214 |
+
print("Generation:", args.max_tokens / generation_time, "tokens-per-sec")
|